DigiLut

Arijana Bohr Emmanuelle Salin

Team MaD Lab

Arijana Bohr PhD Student

Emmanuelle Salin
Post-Doc

University

Project

The DigiLut Challenge

Research Question

Can Al accurately detect

Type A lesions?

Dataset

2000 digitised lung biopsies 25% annotated

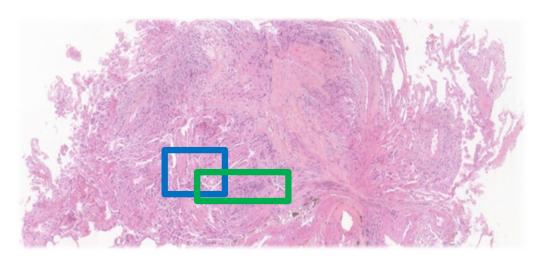
Task

Develop algorithm that detects Type A lesions

Translational Impact

Al based tool for detection of lung transplant rejection

Goal of the Challenge



Goal

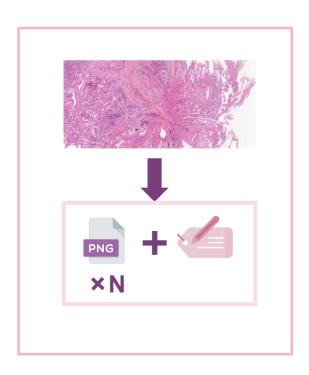
For a given Whole Slide Image, find bounding boxes of possible type A lesions.

A bounding box is valid if:

Generalized Intersection over Union (gloU) of prediction and ground truth > 0.5

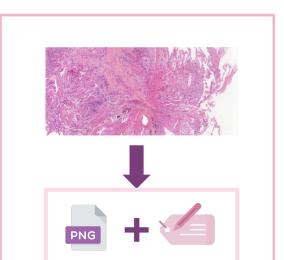
Pipeline

Dataset Creation



Pipeline

Dataset Creation



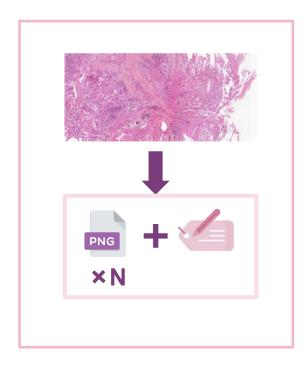
Model Training

Pipeline

Dataset Creation

Model Training

Prediction





Region-of-Interest Detection

Object Detection

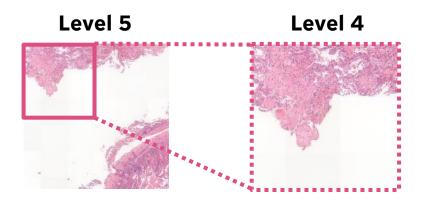
- Recent advances (Yolo models [1])
- Challenging to apply to very large images

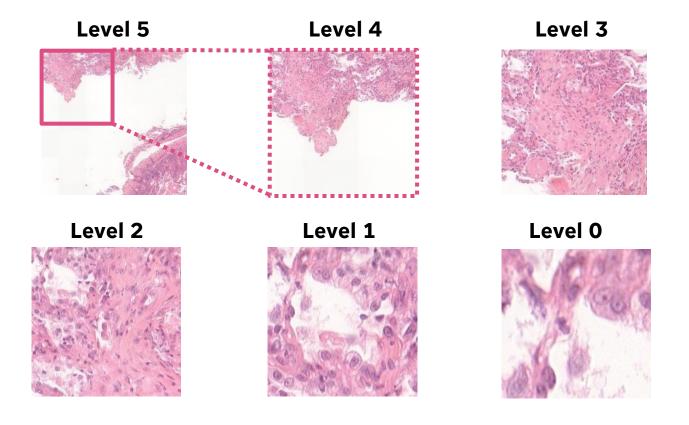
Patch Classification

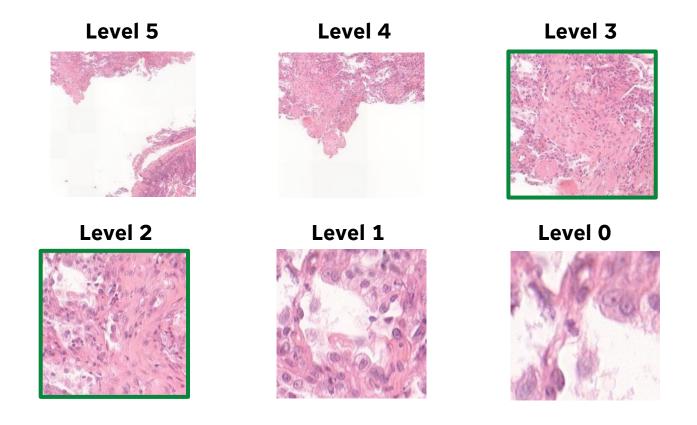
- Previous work in Deep Learning for WSI
- Efficient

[1] Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., ... & Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications.

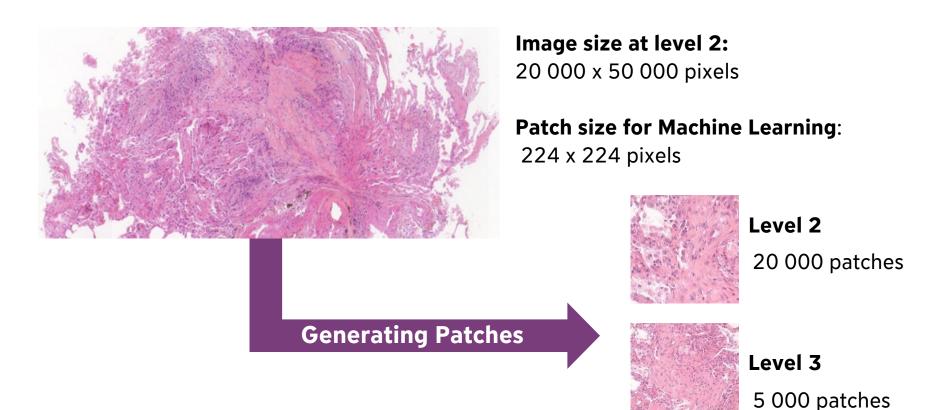
Level 5







Patch Extraction



Patch Selection

Level 5: Is patch an artifact or background?

Level 4: Is patch an artifact or background?

Level 3: Is patch an artifact or background?

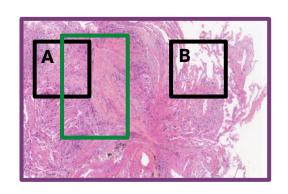
Patch selected

Patch Annotation

- 1. Select patch
- 2. Assign a **soft label**:

$$y_{\text{Bbox}} = \begin{cases} 0, & \text{if patch has no overlap with a lesion} \\ \text{gIoU(lesion, patch)}, & \text{otherwise} \end{cases}$$

Example:



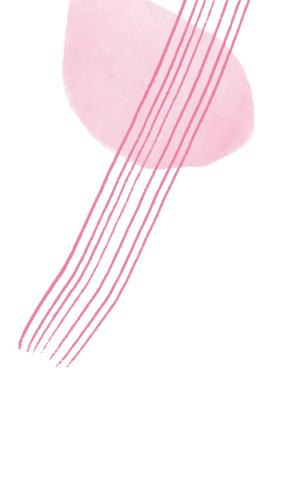
$$y_{\mathbf{A}} \in]0,1[$$
$$y_{\mathbf{B}} = 0$$

Patch Annotation

- 1. Select patch
- 2. Assign a soft label
- 3. Balance the dataset

Training Dataset:

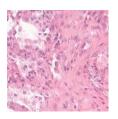
Randomly select patches to achieve a **2:1 ratio** (no overlap: overlap).



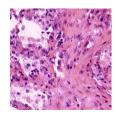
Model Training Patch Classification

Patch Preprocessing

1. Enhance the **contrast** and **standardize** Luminosity

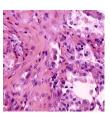


Original Patch

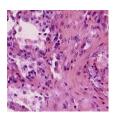


Pre-processed Patch

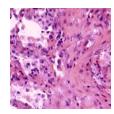
2. Data augmentation



Vertical/ Horizontal Flip



Color Jitter



Gaussian Blur

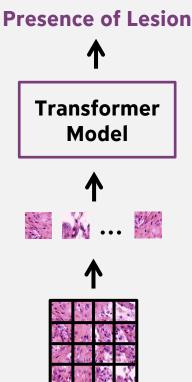
Model Architecture

Tested pre-trained image classification models:

- Dinov2 [2],
- Swin [3]...

Selected the **Dinov2 small** model

- Open source model (Hugging Face)
- Reduced training time



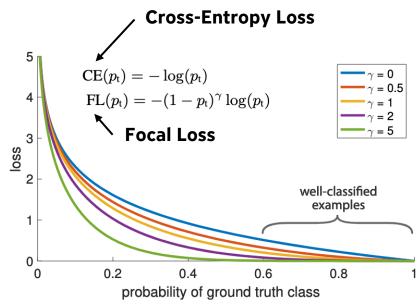
- [2] Darcet, Timothée, et al. "Vision transformers need registers."
- [3]. Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows."

Implementing a Soft Focal Loss

Focal loss [4]: Loss first used in object detection to address the background/object class imbalance.

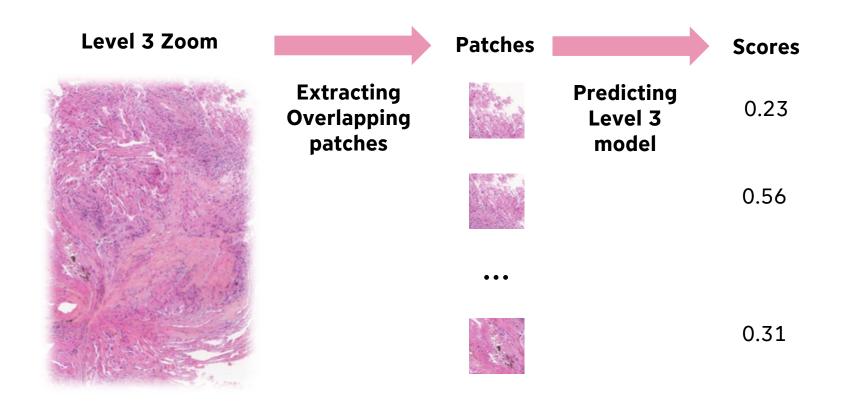
We use this loss with **soft labels:**

The <u>label</u> of a patch is the **overlap** between **patch** and **lesion**.

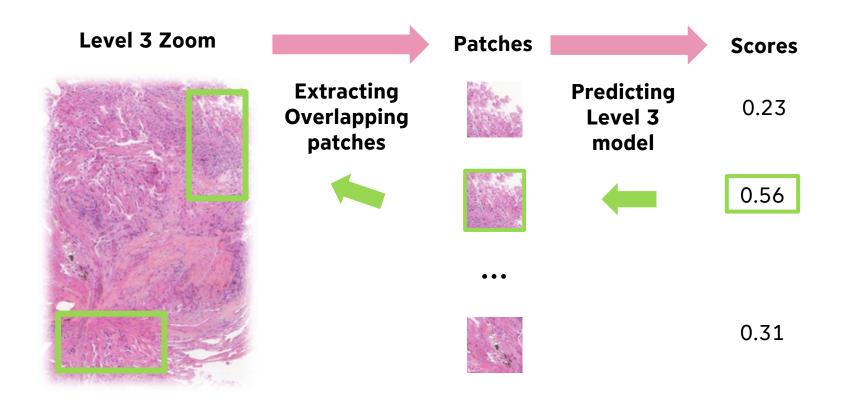


We **scale** the soft labels before computing the loss.

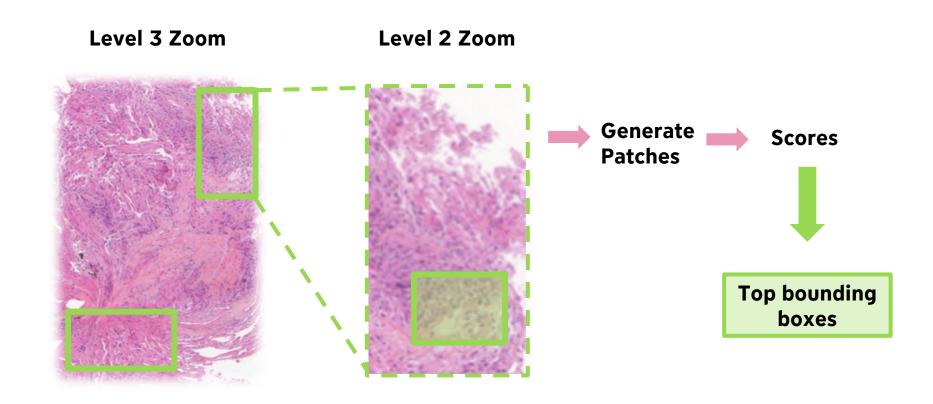
Predicting Lesions: Higher Level

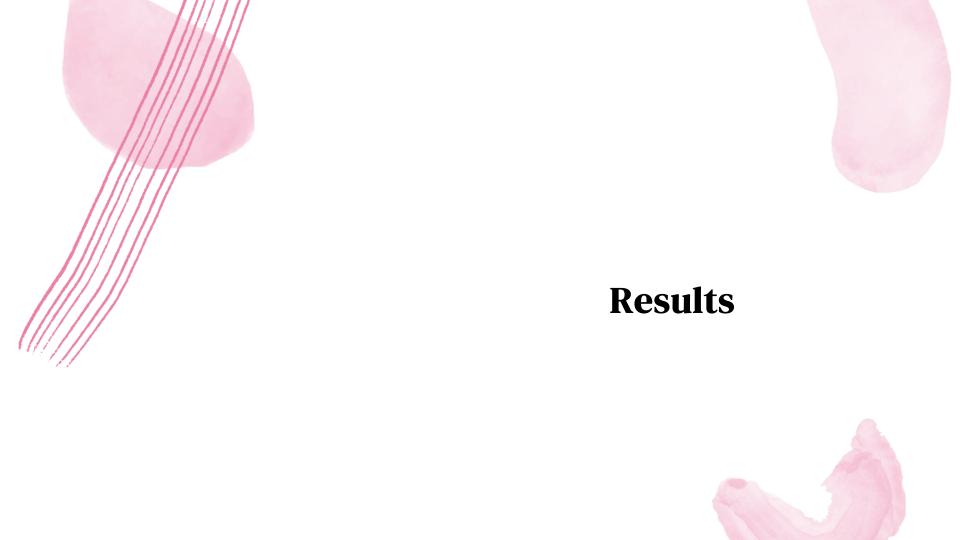


Predicting Lesions: Higher Level



Predicting Lesions: Lower Level





Results

Public Leaderboard

Rank	Members	Team	Score
Ö	2 🐧	CVN	0.4122479325926966
Ö	2 6	MaD lab (team)	0.3778973169602485
Ö	1	Sheoran	0.3469621177771763
4	1	Kirill Brodt	0.28751367824832735
5	1	Amine Marzouki	0.26617662202389847

Private Leaderboard

Rank	Members	Team	Score
<u>8</u>	2 🚯	CVN	0.39785619771945163
9	2 🐧	MaD lab (team)	0.3260887998317052
0	1	Sheoran	0.2507181626600864
4	2 1	Raphaël Bourgade + MPWARE	0.24338232144947208
5	1	Raphael Kiminya	0.22056285013635285

Outlook

Medical Perspective: Exchange with clinical partners for feedback

Explaining Performances: Study the impact of various parameters

(image size, model size) through ablation studies.

Leverage the **non-annotated data** through self-supervised pre-training.

Implementation: Discuss translational possibilities

Timeline

2021-2024

2021

Challenge

selected

Dataset Creation Summer 2024

DigiLut Challenge November 2024

Results Presentation 2025-

Continuing collaboration

Thank you for your attention!