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Maschinelles Lernen an multiplen Krankenhausern
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Zentralisiertes maschinelles Lernen
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Foderiertes Lernen — Client / Server
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Fdderiertes Lernen — Sequentiell
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Foderiertes Lernen — Dezentral
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Horizontales Foderiertes Lernen
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Vertikales Foderiertes Lernen
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Warum der Aufwand?

* GroBBe Datensatze sind fir Maschinelles Lernen wichtig

* Daten verschiedener Kliniken aufgrund anderer Methoden oder
Patientenprofile unterschiedlich

* Patientendaten sind sehr sensibel, einfaches Teilen besonders
hochdetaillierter Daten nicht moglich
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Projektziele

Entwicklung und Einsatz dezentraler, foderierter Algorithmen zur

Unterstitzung klinischer Entscheidungen in der Intensivmedizin

>

Nutzung und Projektspezifisches Anwendung von
Erweiterung des Common Dataset Ansatzen des
Datenintegrations- definieren féderierten Lernens
zentrums auf Daten der

Intensivmedizin
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Erforschung der
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Intensivmedizin

* Befasst sich mit akut
lebensbedrohlichen
Zustanden und Krankheiten

* Aufwendig strukturell und
technisch ausgestattet

* Monitoring und Erhalt der
Vitalfunktion

* Therapie: Beatmung,
Infusion, kunstliche
Ernahrung

Data Integration for Future Medicine
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Intensivmedizin - Daten

Hohes Personal/Patienten-
Verhaltnis

GroBBe Datenmengen/-detail

Vielzahl von Systemen

_ _ Anforderung an eine extrem klare
Datenkooperation zwischen Systemen Datendarstellung

Heterogenitat der Daten

Hohe Anfalligkeit der Patienten

UnregelmaBig bis hochfrequent
(temporality)

Schnelle Datenprasentation

Strukturierte Daten

— GroBes Potenzial fur Entscheidungshilfen und daraus resultierende Vorteile
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Use cases

|. Patientenbeatmung Il. Bluttransfusion

ML zur Optimierung von Techniken ML zur Optimierung personalisierter

und Parametern fUr die Entscheidungen fur Bluttransfusionen durch

Patientenbeatmung Erfassung des klinischen Kontexts und der
Daten
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Arbeitspakete

Titel Aufgaben

Technisch-organis. Datenschutzkonzept, Kerndatensatz
MaBnahmen

ETL KIS-Extraktion, OMOP Infrastruktur, Mapping von
Vokabularen

Foderierte Analyse FL Framework implementieren, ML darin umsetzen,
OMOP CDM Zugreifbar gestalten, GloreChain

Anwendung auf Infrastruktur mit verschiedenen Analysen der Use
Use Cases Cases umsetzen

Transfer in Klinik Pilot-Projekte in der Klinik testen und evaluieren

IIIII
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MiIl Core Dataset ICU

MEDIZIN

INFORMATIK
= INITIATIVE
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Medizininformatik Initiative - Modul ICU - ImplementationGuide

4/ IG MII KDS Modul ICU
7 Beschreibung Modul

Dtonextim Gesamiprojeke/peioe v ande. - Karndatensatz Erweiterungsmodul Intensivmedizin

) Referenzen

Die vorliegende Spezifikation beschreibt die FHIR-Reprasentation des Kerndatensatz-Erweiterungsmoduls
‘Intensivmedizin' der Medizinformatik-Initative. Im Folgenden werden die Use-Cases des Moduls sowie die
dazugehérigen FHIR-Profile und Terminologie Ressourcen in ihrer Form beschrieben.

3 Anwendungsfélle / Informationsmodell

2

) Beschreibung von Szenarien fir die Anwe.
_) Datensétze inkl. Beschreibungen

- UML Veroffentlichung
|’3 2) Technische Implementierung

) Kompatibilitt Datum 07.11.2022
) FHIR-Profile Version 1.0.0
i J) Parameter von extrakorporalen Verfah.. )
Status Final
2) Extrakorporale Verfahren (Procedure
Realm DE

2 Eingestellte und gemessene Param...

[= () Parameter von extrakorporalen Verf.

() Blutfluss durch cardiovasculéres .. Inhaltsverzeichnis

--(}) Ionisiertes Kalzium aus Nierener..
 1G MII KDS Modul ICU

o Beschreibung Modul
o Kontext im Gesamtprojekt / Bezlige zu anderen Modulen
o Referenzen

--[}) Sauerstoffgasfluss (Observation)
() Dauer Hamodialysesitzung (Obs...

--(}) Hémodialyse Blutfluss (Observat..

- (D Substituatfiuss (Observation) o Anwendungsfélle / Informationsmodell
- (@ Substituatvolumen (Observation) = Beschreibung von Szenarien fiir die Anwendung der Module
- () Dauer extrakorporaler Gasausta... = Datensétze inkl. Beschreibungen
~(}) Blutfluss extrakorporaler Gasaus.. = UML
() Blutflussindex extrakorporaler G... o Technische Implementierung
..(J) Venéser Druck (Observation) = Kompatibilitat
= FHIR-Profile

- [}) Arterieller Druck (Observation)

- () Beatmungswerte = Terminologien

) Beatmung (Procedure)

_)) Eingestellte und gemessene Param... Impressum
() Parameter von Beatmung (Observa.. Dieser Leitfaden ist im Rahmen der Medizininformatik-Initative erstellt worden und unterliegt per Governance-

2 Unterstiitzungsdruck Beatmung .. Prozess dem Abstimmungsverfahren des Interoperabilitdtsforums und der Technischen Komitees von HL7
3 Endexpiratorischer Kohlendioxid... Deutschland e.V. D I F U I U R E
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Analysen

* Review von Architekturen und Frameworks fur foderiertes Lernen
* Systematische Literaturtibersicht tGber maschinelles Lernen fir Hypoxie

* Start von maschinellem Lernen und Analysen zum Thema der
Anwendungsfalle unter Verwendung offener Datenséatze (MIMIC-IV, elCU-

CRD, amsterdamUMCdDb)
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Analyse fur Use Case 1 - Weaning

Analyse auf der Grundlage
offener Datensatze
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Vorhersage der Entwbhnung von
der mechanischen Beatmung
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Analyse fur Use Case 1 - Weaning
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Projektziele
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