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Cardiac Arrhythmia Localization
via ECG Attractor Imaging
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Rudman et al.

CinC 2022: ACQuA: Arrhythmia Classification with Quasi-Attractors
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Health Outcome Disparities on the EHR
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Garcia-Agundez et al. AMIA 2022: When BERT Fails - The Limits of EHR Classification



Language Generation in a Code-switched World

Tell mom that “Mom you need
to think of one thing at a time,
N9 ND. (hebrew slang fc

Hi, TR B2 FFA X F £10=HY

final project presentation.

EN

Read Liam’'s new message.

(Hi, can you remind me of my final project
presentation tomorrow morning at 107 )

ES
EN

Okay done!

Liam said, "After this I'm just
gonna go home drink summ hot
chocolate con bolillo and sleep.”

O Final Project Presentation
@ 10 AM TOMORROW

) Feed cat
Do Laundry
oo 0

Zhang et al. under review: CroCoSum A Benchmark Dataset for Cross-Lingual Code-Switched Summarization



Topological Embedding Analysis
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Rudman et al. ACL 2022: IsoScore: Measuring the Uniformity of Embedding Space Utilization



Are Language Models World Models?

A frozen image encoder A linear projection is tuned The image projections are
encodes an image as a to project from image fed as soft prompts into a
feature map space to text space generative LM
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Merullo et al. ICLR 2023: Linearly Mapping from Image to Text Space



Grounding Language Models in Physics
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Merullo et al. *SEM 2022: Pretraining on Interactions for Learning Grounded Affordance Representations



LLM Vector Arithmetics
THIE:

matrix projects into
the vocabulary space.
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Merullo et al. under review: Language Models Implement Simple Word2Vec-style Vector Arithmetic
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“IBMILLION =~

diagnostic ERRORS each year

C€Nearly every person will experience
a diagnostic error in their lifetime 77



ML to the Rescue

Golovanevsky et al. 2022 Alzheimers (92.28 %)
Delahanty et al. 2018: Sepsis (97 %)
Gulshan et al. 2016: Diabetic Retinopathy (99.1 %)

Rudman et al. 2022: Cardiac Arrhythmias (99.27%)



ML to the Rescue

Golovanevsky et al. 2022 Alzheimers (92.28%) [n= 2,384]
Delahanty et al. 2018: Sepsis (97 %) [n= 2,759,529]
Gulshan et al. 2016: Diabetic Retinopathy (99.1%) [n= 128,1/75]

Rudman et al. 2022: Cardiac Arrhythmias (99.27%) [n= 8,528]
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Clinical LLMs

Week (05/15/23)- Can Large Language Models Perform Complex Diagnoses?

e We tested these models on the DC3 dataset
e |t contains 30 difficult to diagnose case challenges

Models Task | Task |l Task Il Total
(Open-ended) | (Multiple-choice) (Multiple-choice)

ChatGPT | 8 13 11 16

GPT4 8 14 13 17

BARD 10 14 13 18
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http://health-nlp.org

Why is ChatGPT so good?

Attention
Lots of (diverse) training data
Masked Language Modeling

Tight Guardrails




