

PeriMyo - Vorhersage von Perioperativen Myokardschäden mittels Machine Learning

MIRACUM-DIFUTURE Kolloquium 2024

Benjamin Sailer

17.09.24

© UNIVERSITÄTSKLINIKUM TÜBINGEN.

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

Universitätsklinikum
Tübingen

Scientific background

- In Germany: 15 Mio. surgical interventions in 2020
- In 3% of cases, a postoperative increase in cardiac troponin (cTn) occurs during non-cardiac surgery
 - Increase in cardiac troponin: Marker for damage to the heart muscle tissue
- Perioperative Myocardial Injury (PMI):
 - Increase in cardiac troponin (cTn) above the 99th percentile
 - No signs of myocardial infarction
- Patients with PMI: increased mortality (8-15%)
- Goals:
 - Find risk factors of PMI
 - Use Machine Learning to develop a risk score for predicting PMI based on the risk factors identified

Inclusion/Exclusion criteria

- Inclusion criteria:
 - Presence of an operation (OPS 5.01-5.92, except 5.35-5.37)
 - Presence of a troponin measurement during the same inpatient stay as the operation
 - Age \geq 18 years
- Exclusion criteria:
 - Cardiac surgery operations (OPS 5.35-5.37)
 - Diagnosis of STEMI (I21.1-I21.4) in the same inpatient stay as the operation
 - Further cardiological diagnostics (OPS code 1-274 to 1-277, 1-279, 1-283, 5-381, 8-837, 3-032, 3-607)

Data used

- Demographic data:
 - Age
 - Gender
- Patient history:
 - Diagnosis(s) (ICD-10 coded)
 - Type and date of surgery (OPS coded)
 - Laboratory values (code, measured value, unit and time of examination; LOINC coded)
- MII core data set modules:
 - Person
 - Diagnose
 - Prozedur
 - Laborbefund
 - Fall

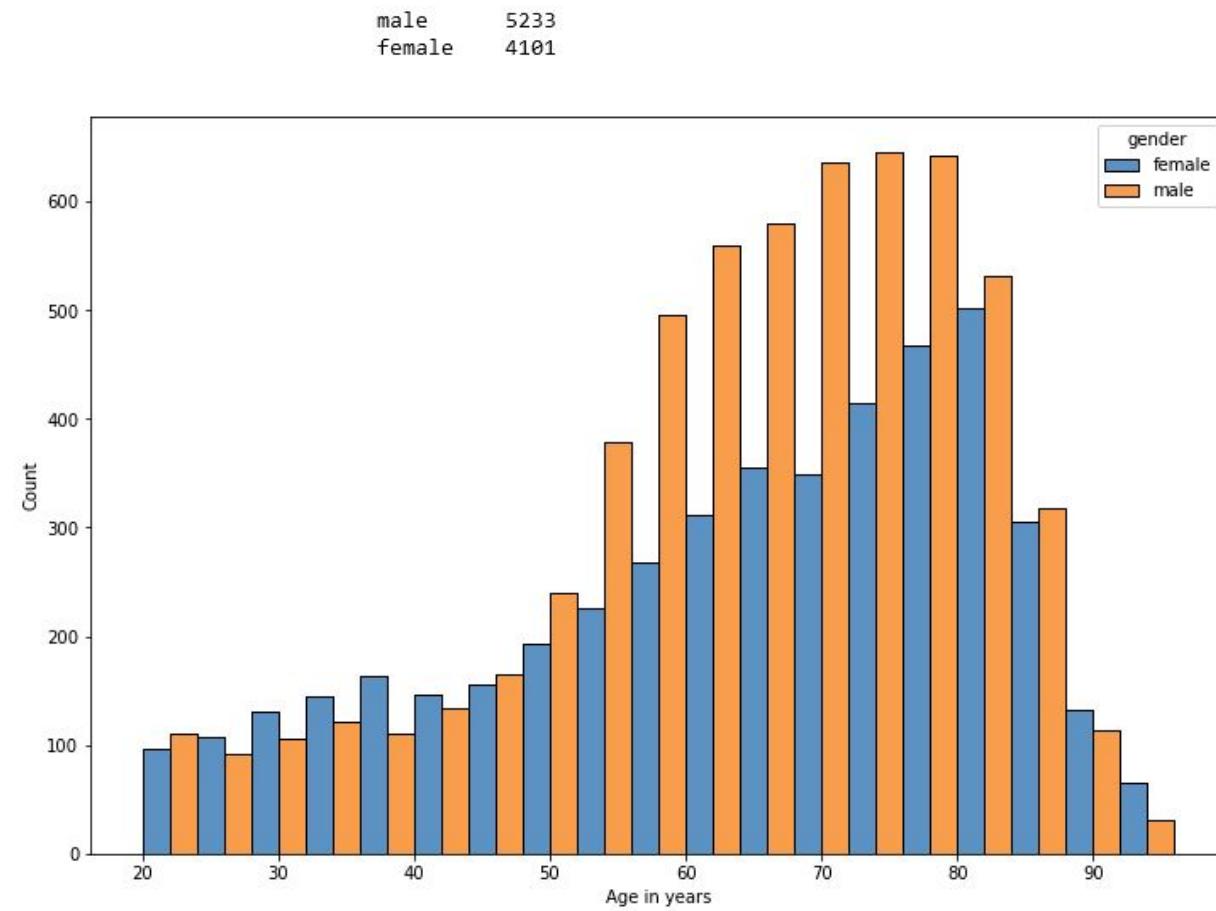
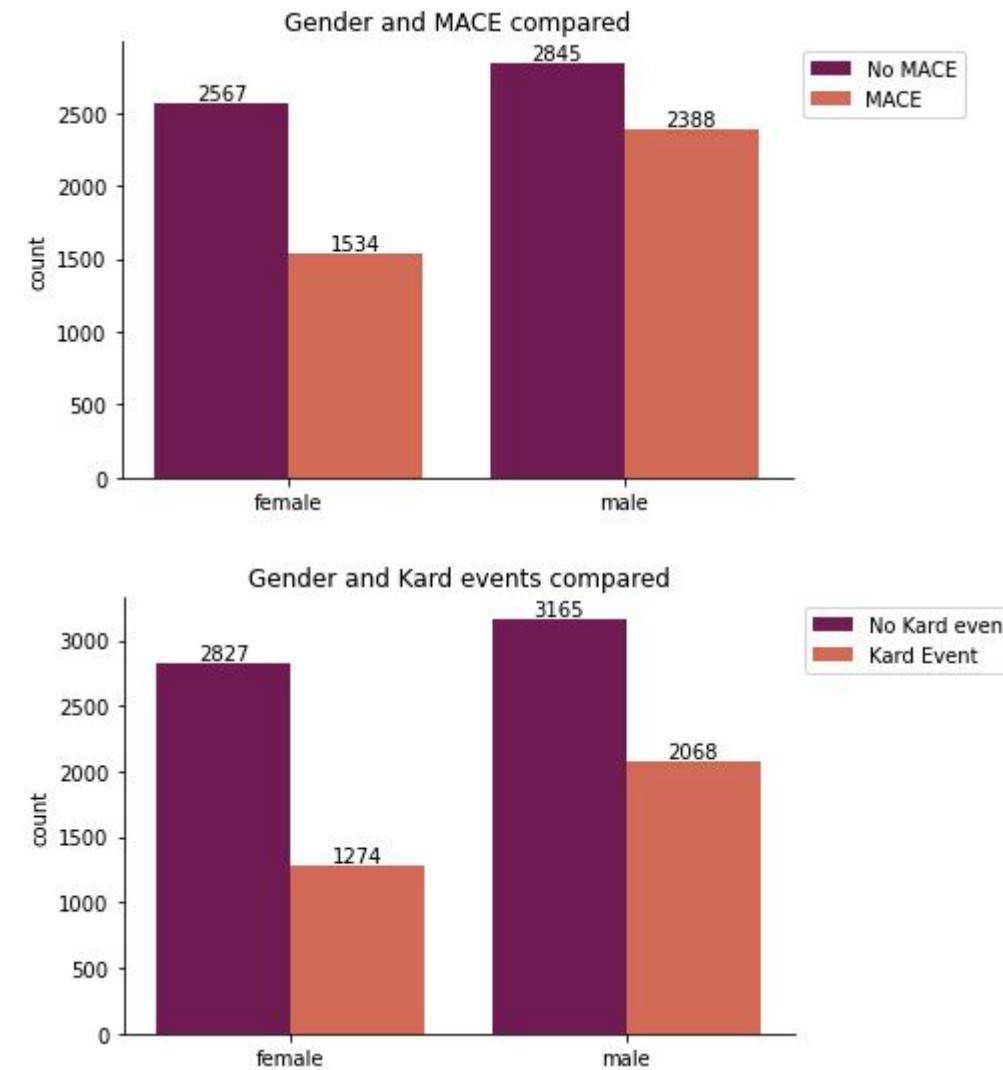
Extraction from FHIR server

- Due to complexity not feasible with a single FHIR query
- Instead: results of multiple, sequential queries are joined together; use of fhircrackR
- Implementation:
 - Get all observations/patients with troponin measurements
 - Get procedures for those patients (OPS 5.01-5.92, except 5.35-5.37)
 - Match dates (+/- 7 days between observation and procedure)
 - Match multiple operations during the same time period (+/- 3 days)
 - Check exclusion criteria
 - Add other (lab) observations
 - Reduce ICD-10 and OPS granularity: ICD-10: E84.21 -> E84; OPS: 5-123.2 -> 5-12
 - Multiple lab observations -> use mean

Data set (1)

- 9334 patients at 10,617 operations with troponin measurements (3683 increased, 6934 not)
- Features (1314 in total):
 - Age at OP, Gender
 - ICD-10 + OPS codes before OP: True/False
 - Certain selected lab values:
 - 0-2 days before OP
 - 3-7 days before OP
 - Modified Charlson Comorbidity Index (without systems "Acute myocardial infarction" and "congestive heart failure")
 - Cardiac Events (presence of certain OPS codes): True/False
 - Major Adverse Cardiovascular Events (MACE, presence of certain ICD codes): True/False

Data set (2)



Machine Learning

- Models used:
 - Logistic Regression: fits data to a logistic function
 - Explainable Boosting Machine: tree-based generalized additive model, support 'shape functions'
 - Random Forest: ensemble of decision trees
 - XGBoost: ensemble of decision trees, sequential growing of trees
- Several (sub-)selections of features used:
 - All data
 - ICD data: ICD-10, age, gender, CCI, MACE
 - Lab data: Lab, age, gender
 - OPS data: OPS-Codes, age, gender, Cardiac Events
- Software:
 - ETL: R 4.1.1, fhircrakr, tidyverse
 - ML: Python 3.10.12, sklearn, interpret, xgboost, imblearn, pandas, numpy
 - Figures: R 4.4.0, tidyverse, patchwork, ggpunr

Machine Learning - Explainability

- SHAP (SHapley Additive exPlanations):
 - Can explain blackbox models after training
 - Shapley value quantifies its contribution to the difference between the actual model prediction and the expected prediction
 - positive SHAP value: pushes prediction for positive class -> potential risk factor for PMI
- Explainable Boosting Machines:
 - By design interpretable
 - Feature importance: average of the absolute predicted value of each feature for the training dataset
→ corresponds with which features have the largest impact on predictions in the training set

Machine Learning - Model training

- For each subselection of features: repeated 5 times with different seeds
 - Preprocessing:
 - Outlier removal ($1.5 * \text{IQR}$)
 - Features/patients with more than 50% missing values excluded
 - 80-20 train/test/validation split: 80% train/test, 20%: validation
 - Models:
 - Imputation of missing values
 - (if necessary) Scaling
 - Features with 80% pearson correlation are dropped
 - Training:
 - Hyperparametersearch
 - Random Search with 50 iterations / model (EBM: due to slower runtime only 10)
 - 10-fold crossvalidation, validation of models on validation data set (see above)
 - Best model: based on balanced accuracy

Results - all data - prediction of PMI

- Note: results are still preliminary (!)
- Average performance metrics per model across 5 seeds

Model	Balanced accuracy	ROC-AUC	Precision	Recall
Explainable boosting machine	0.676 (+/-0.007)	0.826 (+/-0.002)	0.704 (+/-0.014)	0.42 (+/-0.014)
Logistic regression	0.697 (+/-0.011)	0.821 (+/-0.008)	0.672 (+/-0.021)	0.487 (+/-0.024)
Random forest classifier	0.692 (+/-0.013)	0.824 (+/-0.008)	0.693 (+/-0.023)	0.464 (+/-0.031)
XGBoost	0.701 (+/-0.015)	0.833 (+/-0.008)	0.675 (+/-0.029)	0.496 (+/-0.029)

Results - all data - feature importance across all models

J96: Respiratorische Insuffizienz, anderenorts nicht klassifiziert

D69: Purpura und sonstige hämorrhagische Diathesen

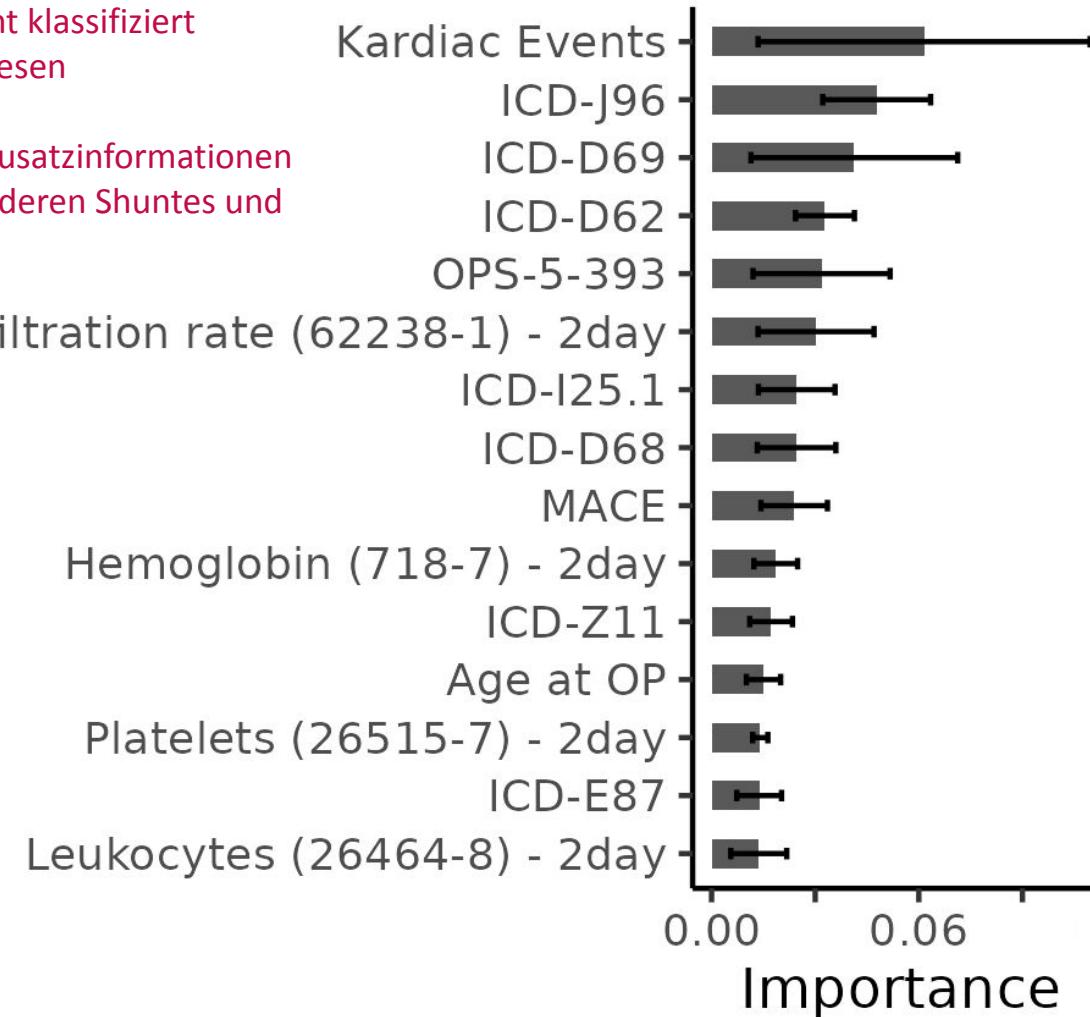
D62: Akute Blutungsanämie

5-393: Andere Operationen an Blutgefäßen und Zusatzinformationen zu Operationen an Blutgefäßen: Anlegen eines anderen Shuntes und Bypasses an Blutgefäßen

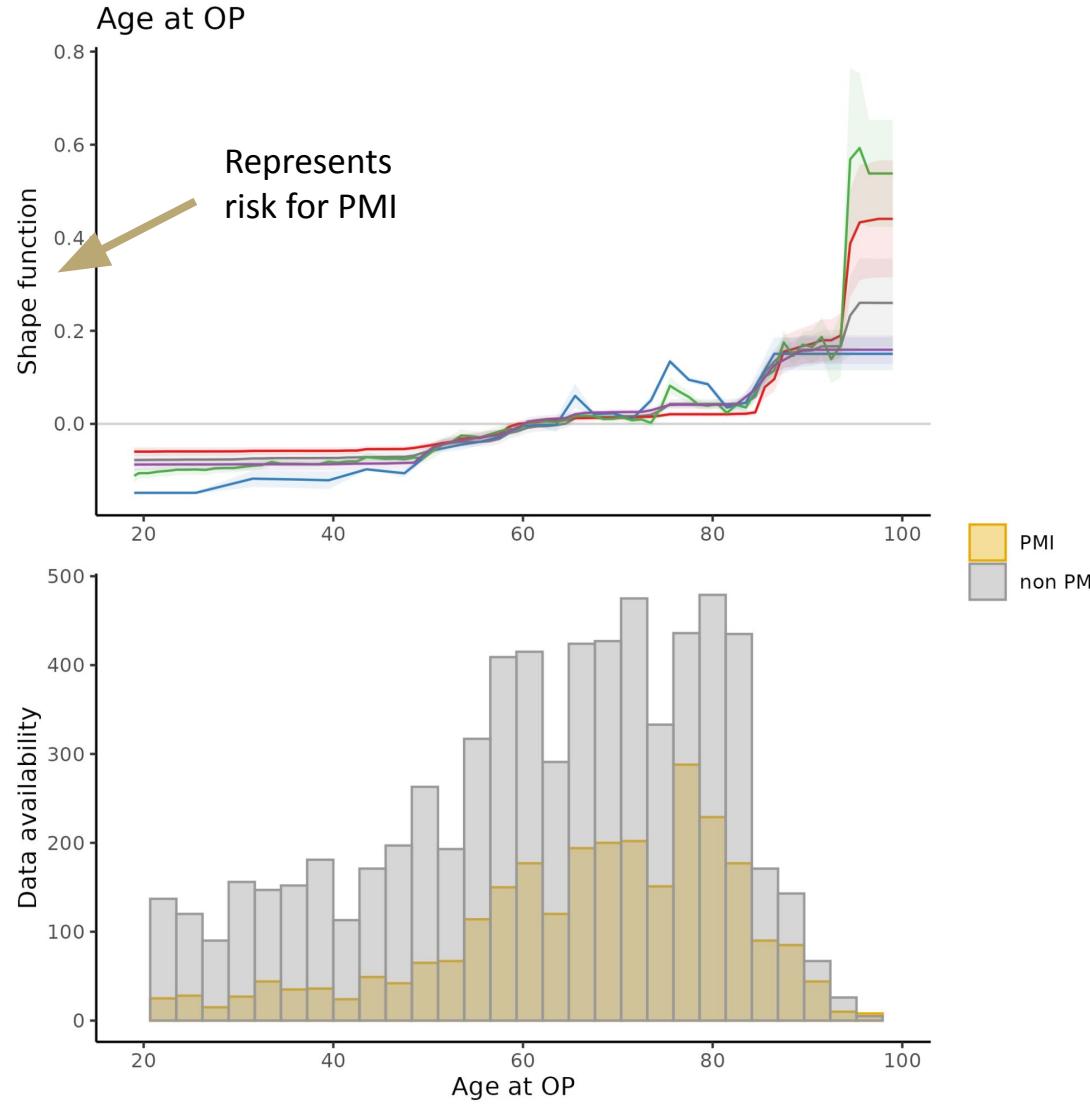
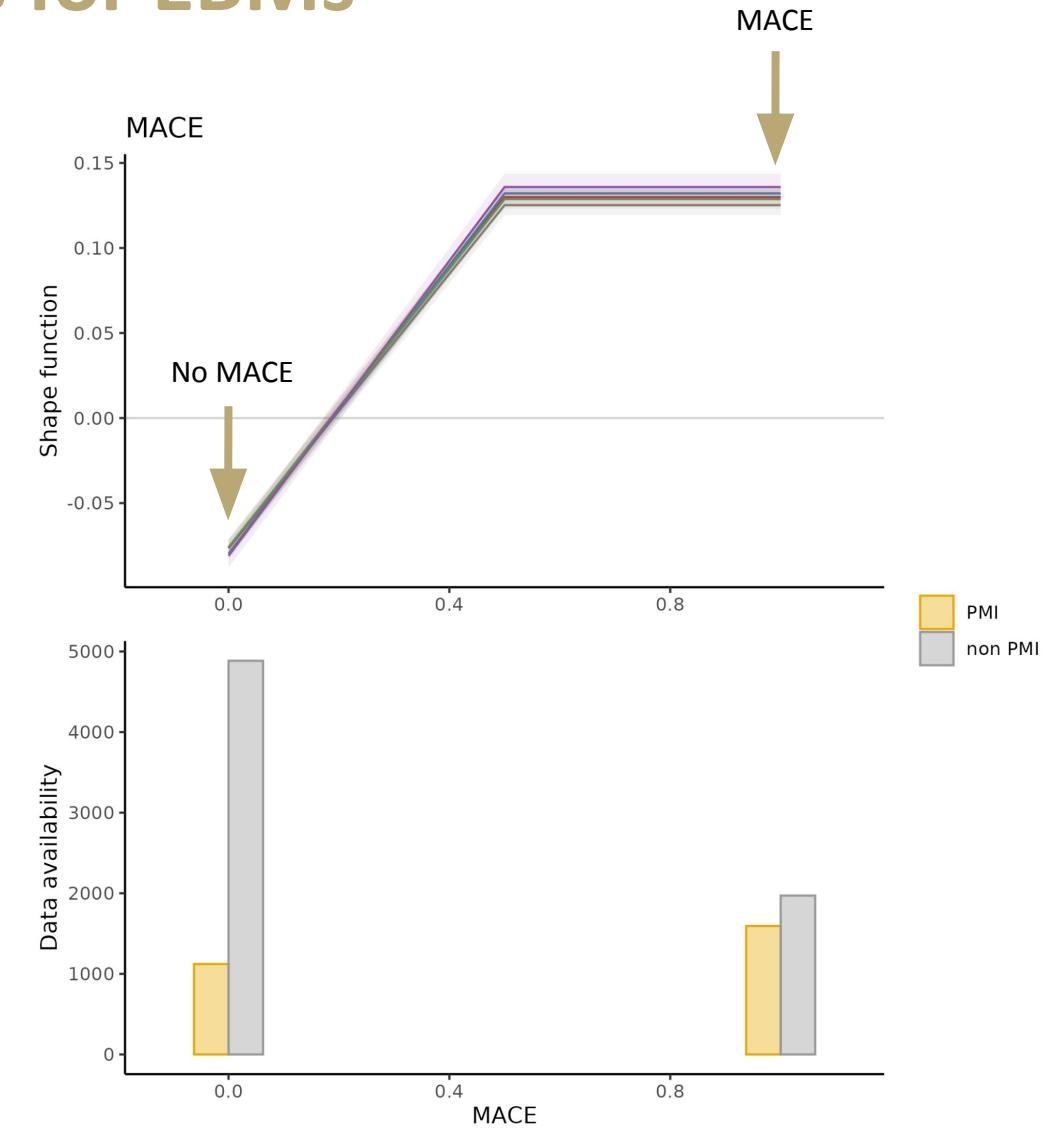
I25.1: Atherosklerotische Herzkrankheit

D68: Sonstige Koagulopathien

MACE: Major Adverse Cardiovascular Events



Results - all data - shape functions for EBMs

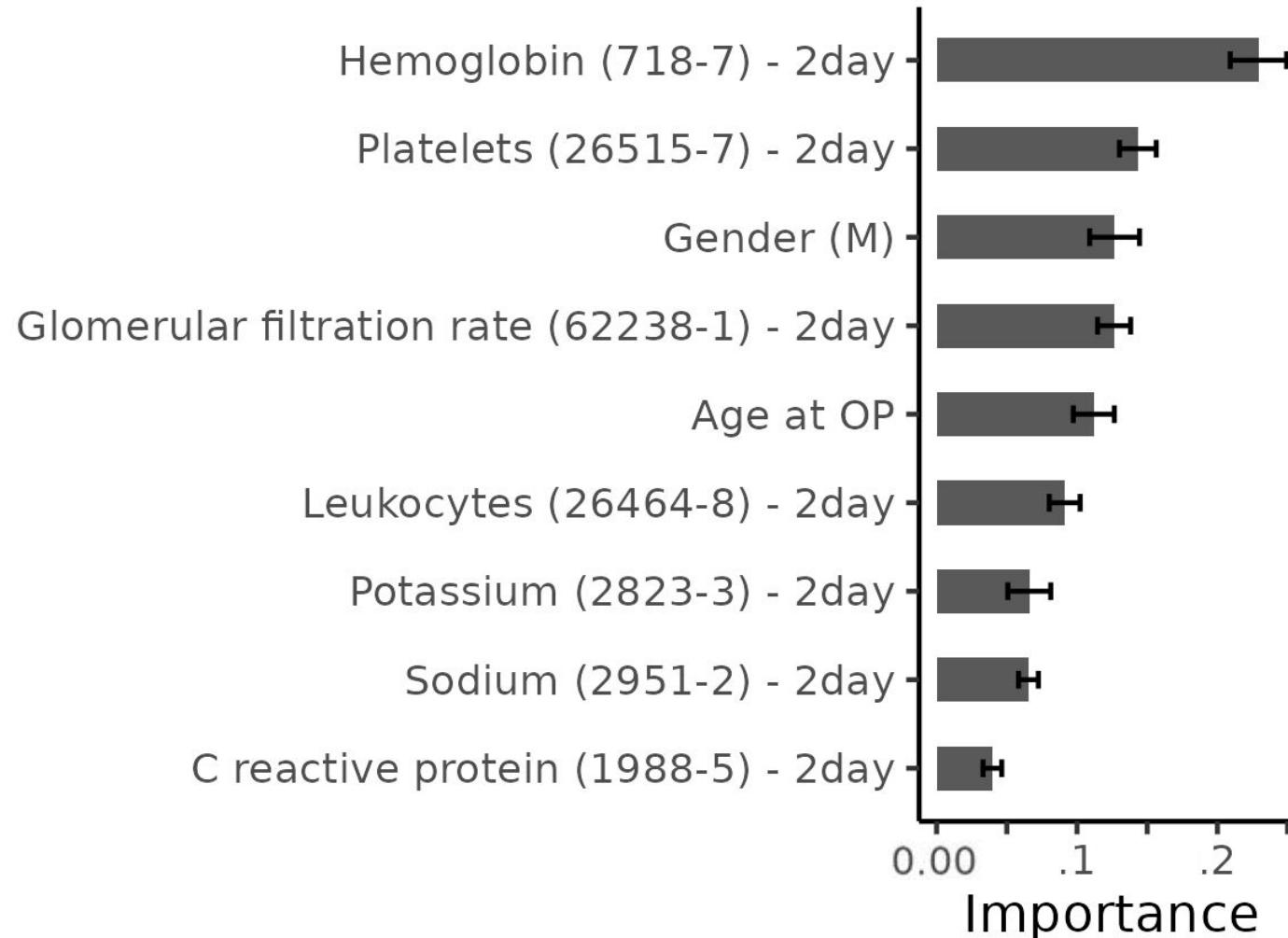


Results - lab data - prediction of PMI

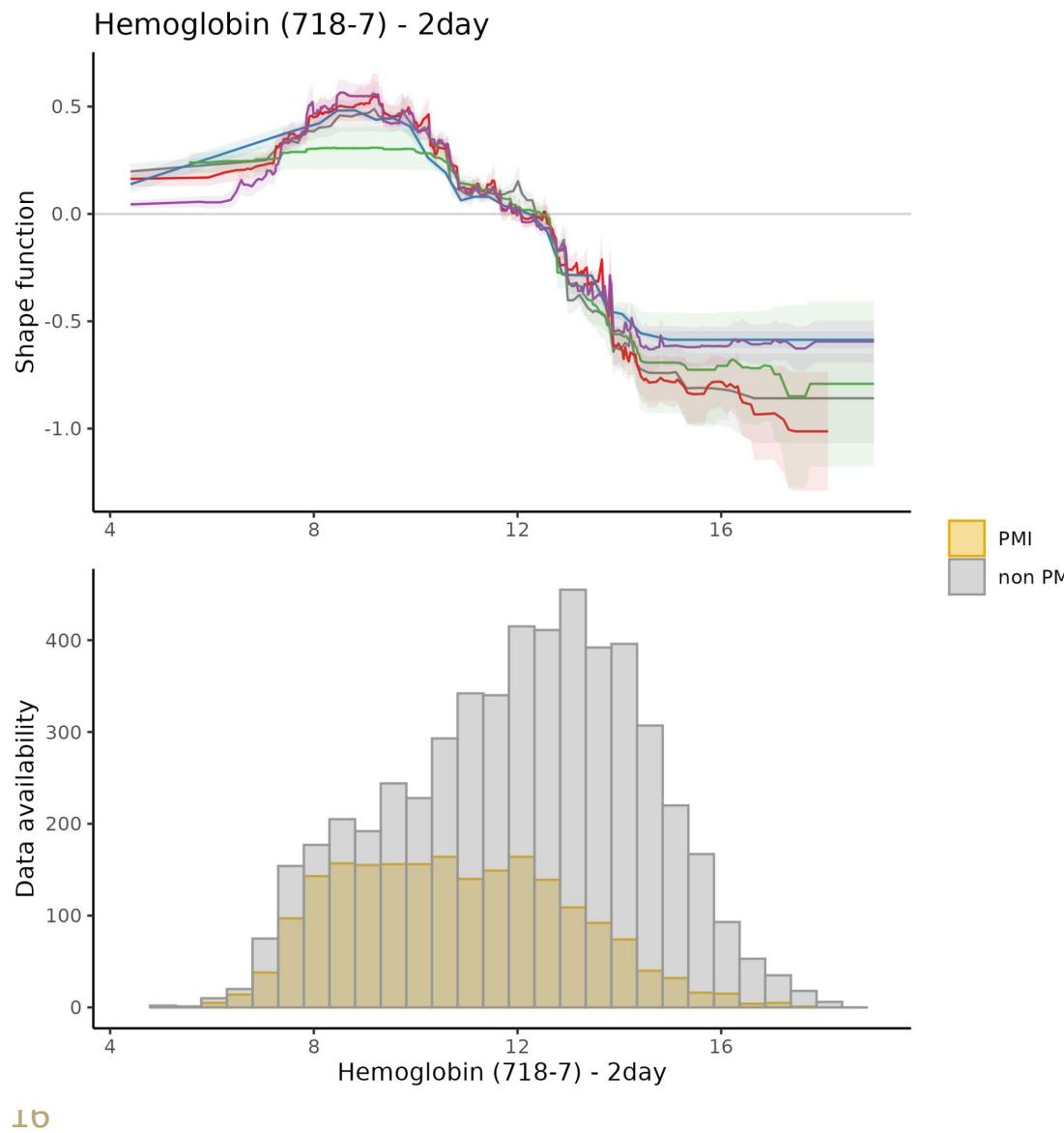
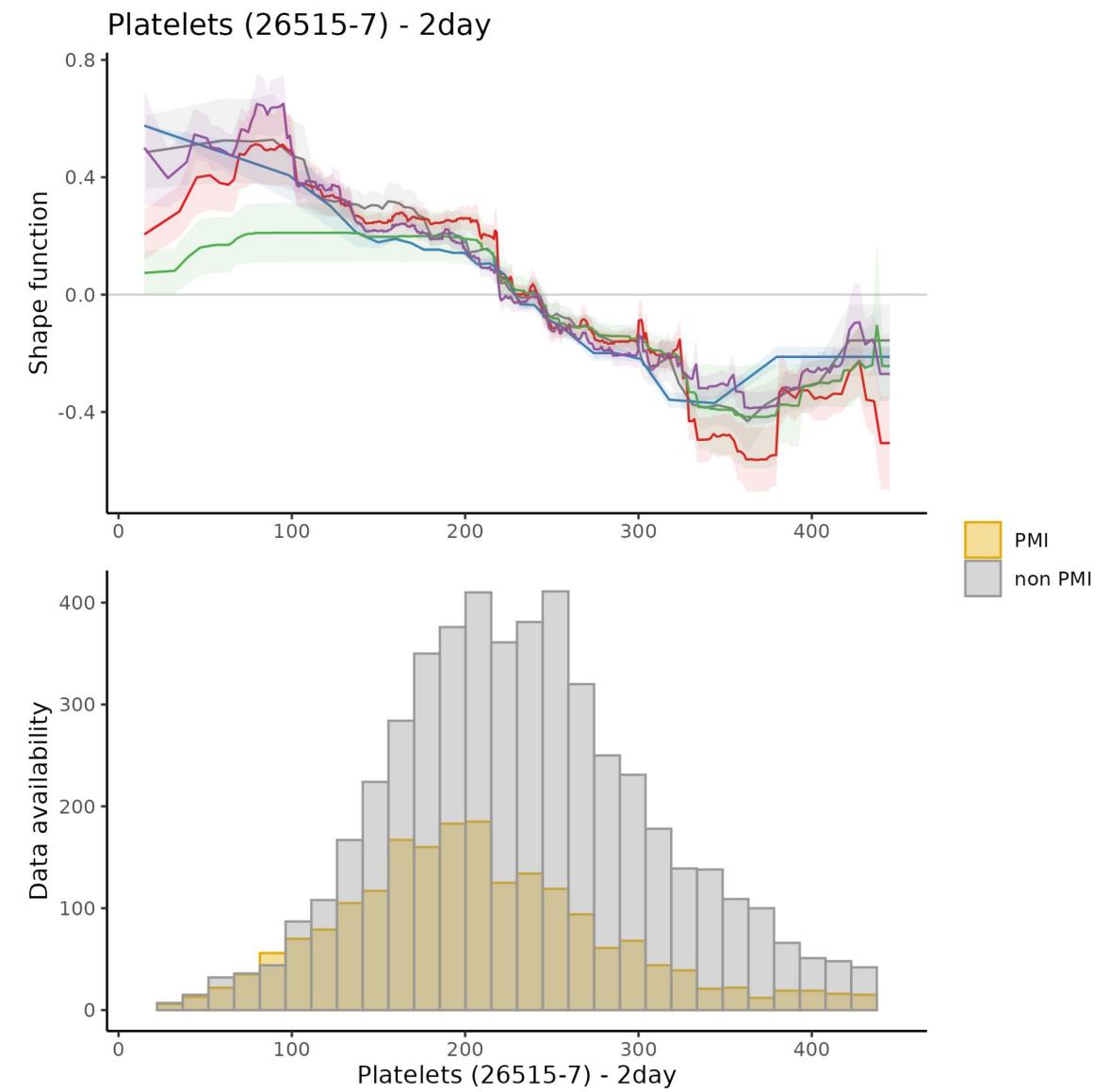
- Average performance metrics per model across 5 seeds

Model	Balanced accuracy	ROC-AUC	Precision	Recall
Explainable boosting machine	0.54 (+/-0.014)	0.686 (+/-0.009)	0.591 (+/-0.042)	0.11 (+/-0.036)
Logistic regression	0.557 (+/-0.007)	0.687 (+/-0.018)	0.556 (+/-0.037)	0.166 (+/-0.015)
Random forest classifier	0.549 (+/-0.008)	0.655 (+/-0.01)	0.453 (+/-0.029)	0.187 (+/-0.024)
XGBoost	0.561 (+/-0.007)	0.645 (+/-0.025)	0.438 (+/-0.041)	0.248 (+/-0.02)

Results - lab data - feature importance across EBM models



Results - lab data - shape functions for EBMs



Results - overall

- Prediction can work quite well:
 - All data: 0.826 (+/-0.005) ROC-AUC
 - ICD data: 0.813 (+/-0.01)
 - OPS data: 0.774 (+/-0.006)
 - Lab data: 0.668 (+/-0.022)
- Results very stable across multiple models/seeds
- Certain diagnosis and procedures seem to be very related with PMI; prediction works good using this data only
- low hemoglobin and platelet counts indicate higher risk of PMI
-> interpretation TBD

Next steps

- Dig into details of results
- Extend prediction to patients without troponin measurement -> ethics proposal
- Validate results on other data -> FDPG proposal submitted:
 - Decentral analysis:
 - descriptive statistics at sites
 - validation of already trained model
 - training new models at sites
 - (optional): validation of new models at other sites

People involved

- Lars-Christian Achauer (DIZ Tübingen)
- Stephanie Biergans (DIZ Tübingen)
- Michaela Hardt (DIZ Tübingen)
- Michael Köppen (Klinik für Anästhesiologie und Intensivmedizin Tübingen)
- Benjamin Sailer (DIZ Tübingen)
- Sibel Sari-Yavuz (Klinik für Anästhesiologie und Intensivmedizin Tübingen)
- Raphael Verbücheln (DIZ Tübingen)

Benjamin Sailer

17.09.24

© UNIVERSITÄTSKLINIKUM TÜBINGEN.

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

Universitätsklinikum
Tübingen