
www.med.uni-magdeburg.de

ETL Strecke vom DWH

zum FHIR Server mit

Dagster

Eine Einführung

Ralf Lützkendorf

Inhalt

• Einführung: Daten- und Workflow-Management

• Entwicklung der Orchestrierungs-Tools

• Airflow vs. Dagster

• Dagster im Detail: Architektur und Features

• Dagster: Mini Tutorial

• Fazit und Ausblick

Daten- und Workflowmanagement

Datenmanagement

• Aktivitäten

• Prozesse

• Technologien

Daten- und Workflowmanagement

• Erfassung

• Speicherung

• Organisation

• Integration

• Bereinigung

• Sicherung

• Bereitstellung

• Datenintegration

• Datenqualität

• Datenmodellierung

• Datenbankmanagement

• Datensicherheit

• Datenarchivierung

Workflowmanagment

• Systematische Planung

• Koordination

• Ausführung

Daten- und Workflowmanagement

• Bestimmte Reihenfolge

• Bestimmte Ziele

• Aufgabenplanung

• Ressourcenmanagement

• Abhängigkeitsmanagement

• Überwachung und Steuerung

• Automatisierung

• Reporting

Software

• Verbindung von Daten- und Workflow-Management

• Ziele der Verbindung

• Besondere Anwendungsfälle

• Klare Strukturen

• Schlüsselwerkzeuge

Daten- und Workflowmanagement

Nutzen

• Workflow-Definition

• Scheduling

• Monitoring

• Fehlerbehandlung

• Wiederaufnahme

• Skalierung

• Flexibilität

Daten- und Workflowmanagement

Privat

• Backup

• Privates Daten sammeln (Fotos, Finanzen, Gesundheit Familie,…)

• Automatisierung im Haushalt/Smart Home/IoT Geräte

• Hobby Projekte (Routine Aufgaben)

Daten- und Workflowmanagement

DWH zum FHIR

Daten- und Workflowmanagement

Lesen des DWH

FHIR Transformation

Lesen/Schreibe des FHIR Server

Datenanalyse

Data Cleaning
Delta Load

Spezifikation für Mapping

Lesen/Schreiben der Staging Datenbank

Daten- und Workflowmanagement

Open Source Top 8 Tools

1.Luigi:
2.Prefect:
3.Apache NiFi:
4.Celery:
5.Taskflow:
6.Kubeflow Pipelines:
7.Oozie:
8.Jenkins:

Daten- und Workflowmanagement

Airflow Überblick

• Seit 2014 (Airbnb)

• 2015 unter Apache Lizenz 2.0

• 2016 Top Level Projekt Apache Software Foundation

• 2018 Airflow 1.10

• 2020 Airflow 2.0

• Aktuell 2.10.2 (September 2024)

Daten- und Workflowmanagement

Airflow Überblick

1.Airbnb: Wie bereits erwähnt, wurde Airflow ursprünglich von Airbnb entwickelt und ist integraler Bestandteil ihrer

Dateninfrastruktur.

2.Adobe: Nutzt Airflow zur Automatisierung von Datenworkflows in verschiedenen Geschäftsbereichen.

3.Twitter(X): Setzt Airflow ein, um komplexe Datenpipelines zu managen, die große Mengen an Tweet-Daten

verarbeiten.

Daten- und Workflowmanagement

Airflow Überblick

Daten- und Workflowmanagement

Airflow Überblick

Daten- und Workflowmanagement

Daten- und Workflowmanagement

Dagster Überblick

• Seit 2019

• 2020 extreme Verbesserungen und Weiterentwicklungen

• Aktuelle Version 1.7.4 / 0.21.14 libraries (Mai 2024)

Daten- und Workflowmanagement

Dagster Überblick

Unternehmen, die Dagster nutzen

1.Elementl: Das Unternehmen hinter Dagster nutzt natürlich seine eigene Software zur Datenpipeline-

Orchestrierung.

2.GoodRx: Nutzt Dagster, um ihre Datenpipelines zu managen, was entscheidend ist, um erschwingliche

Medikamentenpreise anzubieten.

3.Wolt: Dieses Lieferdienst-Unternehmen verwendet Dagster zur Verbesserung ihrer Datenverarbeitungsprozesse,

was ihnen hilft, Lieferungen effizienter zu gestalten.

Daten- und Workflowmanagement

Dagster Überblick

Daten- und Workflowmanagement

Dagster Überblick

Daten- und Workflowmanagement

Dagster versus Airflow

Daten- und Workflowmanagement

Vergleich

Daten- und Workflowmanagement

•Projektanforderungen:
•Spezifische Anforderungen des Projekts

•Präferenzen:
•Persönliche und Teampräferenzen

•Infrastruktur:
•Integration mit vorhandener Infrastruktur

•Community und Ressourcen:
•Community-Support und Ressourcenverfügbarkeit

•Lernkurve:
•Lernkurve für das Team

•Flexibilität:
•Flexibilität bei der Definition von Workflows

•Erweiterbarkeit und Integration:
•Erweiterbarkeit und Integration mit anderen Tools

Vergleich – Apache Airflow

Vorteile:
•Community-Support:

• Breite Community und weit verbreitet in vielen Unternehmen.
• Zugriff auf eine reiche Ressourcenbasis für Support und Erweiterungen.

•Flexibilität:
• Flexibilität bei der Definition von DAGs und Tasks.
• Gut geeignet für verschiedene Anforderungen in der Datenverarbeitung.

•Scheduler:
• Der Scheduler ermöglicht die zeitgesteuerte Ausführung von Aufgaben.
• Nützlich für periodische ETL-Jobs und zeitkritische Workloads.

•Erweiterbarkeit:
• Airflow ist erweiterbar und unterstützt die Integration von Plugins.
• Unterstützt Integrationen für verschiedene Anwendungen und Plattformen.

Nachteile:
•Etwas mehr Boilerplate-Code:

• Im Vergleich zu Dagster - Airflow etwas mehr Boilerplate-Code
• Höherer Initialisierungsaufwand

Daten- und Workflowmanagement

Vergleich - Dagster

Vorteile:
•Datenqualität:

• Starker Fokus auf Überwachung und Sicherung der Datenqualität.
• Besonders relevant in medizinischen Kontexten.

•Declarative Definition:
• Datenpipelines werden deklarativ definiert.
• Verbessert Lesbarkeit und Wartbarkeit des Codes.

•Assets und Metadaten-Management:
• Ermöglicht das Management von Assets.
• Nützlich für die Verwaltung von medizinischen Daten und deren Metadaten.

•Integration mit Analyse-Tools:
• Geeignet für Datenanalyse und Machine Learning.
• Gute Integration mit verschiedenen Analyse-Tools.

Nachteile:
•Lernkurve:

• Das Konzept von Jobs und Assets erfordert möglicherweise eine gewisse Einarbeitungszeit.
• Kann für Programmieranfänger hohe Einstiegshürde.

Daten- und Workflowmanagement

Vergleich

•Dagster:

• Überwachung der Datenqualität.

• Assets-Management.

• Deklarative Definition von Datenpipelines.

•Airflow:

• Breite Community-Unterstützung.

• Flexibilität bei DAG- und Task-Definitionen.

• Integration mit anderen Tools.

Daten- und Workflowmanagement

Daten- und Workflowmanagement

Daten- und Workflowmanagement

Daten- und Workflowmanagement

DIZ Magdeburg

Dagster
PostgreSQL

Dagster
Webserver

Dagster
Python-slim

3.10

Daten- und Workflowmanagement

Linux – Dagster Mini Tutorial

pip install dagster
pip install dagster-webserver
dagster project scaffold --name dwh
cd dwh
mkdir -p /DATA/repos/dwh/dagster_home

export DAGSTER_HOME=$(pwd)/dagster_home

DAGSTER_HOME=$(pwd)/dagster_home dagster-webserver -h 0.0.0.0 -p 3000

ralf@Linux:~$
ralf@Linux:~$
ralf@Linux:~$
ralf@Linux:~$
ralf@Linux:~$
ralf@Linux:~$
ralf@Linux:~$

Voraussetzung:

Python 3.8 bis 3.11 mit pip

Scheduler

Linux – Dagster Mini Tutorial

from dagster import asset

@asset
def hello_diz():
 return "Hello DIZ"

Scheduler

Linux – Dagster Mini Tutorial

from dagster import job, schedule
from .assets import my_asset

@job
def my_job(): # pipeline
 asset() # Asset im Job verwenden

@schedule(cron_schedule="0 * * * *", job=my_job,
execution_timezone="UTC")
def my_hourly_schedule(context):
 context.log.info("Running my hourly job.")

Scheduler

Linux – Dagster Mini Tutorial

Scheduler

Linux – Dagster Mini Tutorial

from dagster import (
 AssetSelection,
 Definitions,
 ScheduleDefinition,
 define_asset_job,
 load_assets_from_modules,
)

from . import assets

all_assets = load_assets_from_modules([assets])

Define a job that will materialize the assets
ETL_DWH_Strecke = define_asset_job("ETL_DWH_Strecke", selection=AssetSelection.all())

Define a ScheduleDefinition for the job with a cron schedule (every 12 hours)
ETL_DWH_Schedule = ScheduleDefinition(
 job=ETL_DWH_Strecke,
 cron_schedule="0 */12 * * *", # every 12 hours
)

defs = Definitions(
 assets=all_assets,
 schedules=[ETL_DWH_Schedule],
)

Scheduler

Scheduler

Linux – Dagster Mini Tutorial

from dagster import asset, MetadataValue
import pandas as pd
from datetime import datetime
from hdbcli import dbapi
import psycopg2

Tabelle/Cube 1 lesen
@asset(
 name="fetch_from_hana_1",
 description="Lädt CV_UKMLD10_DIAGNOSE von SAP HANA und lädt sie in ein DataFrame",
)
def fetch_from_hana_1(context) -> pd.DataFrame:
 conn = None
 try:
 conn = dbapi.connect(
 address="dwh-schnittstellehannah",
 port="30000",
 user="USER",
 password="GeheimesPassword",
 encrypt=False,
 sslValidateCertificate=False
)
 query1 = 'SELECT * FROM "_SYS_BIC"."DIZ_DATA_DIAGNOSE";'
 df1 = pd.read_sql(query1, conn)

Asset lesen

Anzahl der Zeilen als Metadaten hinzufügen
 num_rows = len(df1)
 timestamp = datetime.now().isoformat()

 context.add_output_metadata({
 "Anzahl der Zeilen": MetadataValue.int(num_rows),
 "Zeitstempel": MetadataValue.text(timestamp)
 })

 return df1
 except Exception as e:
 context.log.error(f"Ein Fehler ist aufgetreten: {e}")
 raise e
 finally:
 if conn:
 conn.close()

Scheduler

Linux – Dagster Mini Tutorial

Tabelle 1 schreiben
@asset(
 name="write_to_postgres_1",
 description="Schreibt CV_UKMLD10_DIAGNOSE aus einem DataFrame in PostgreSQL",
)
def write_to_postgres_1(context, fetch_from_hana_1: pd.DataFrame) -> None:
 conn = None
 try:
 conn = psycopg2.connect(
 host="149.111.111.111",
 port="5432",
 user=„USER",
 password=„GeheimesPasswort",
 database="yourdatabase"
)
 cursor = conn.cursor()

 table_name = „DWH_DIAGNOSE"

Asset schreiben

Tabelle leeren (Delta Load)
 cursor.execute(f"TRUNCATE TABLE {table_name};")

 columns_with_types = ", ".join([
 f'"{col}" TEXT' for col in fetch_from_hana_1.columns
])

 create_table_query = f"""
 CREATE TABLE IF NOT EXISTS {table_name} (
 {columns_with_types}
);
 """
 cursor.execute(create_table_query)

Daten einfügen
 for i, row in fetch_from_hana_1.iterrows():
 insert_query = f"""
 INSERT INTO {table_name} ({', '.join([f'"{col}"' for col in fetch_from_hana_1.columns])})
 VALUES ({', '.join(['%s'] * len(fetch_from_hana_1.columns))});
 """
 cursor.execute(insert_query, tuple(row))

 conn.commit()
 except Exception as e:
 context.log.error(f"Ein Fehler ist aufgetreten: {e}")
 raise e
 finally:
 if conn:
 conn.close()

Scheduler

Linux – Dagster Mini Tutorial

from dagster import asset, MetadataValue
import pandas as pd
from datetime import datetime
from hdbcli import dbapi
import psycopg2

Tabelle/Cube 1 lesen
@asset(
 name="fetch_from_hana_1",
 description="Lädt CV_UKMLD10_DIAGNOSE von SAP HANA und lädt sie in ein DataFrame",
)
def fetch_from_hana_1(context) -> pd.DataFrame:
 conn = None
 try:
 conn = dbapi.connect(
 address="dwh-schnittstellehannah",
 port="30000",
 user="USER",
 password="GeheimesPassword",
 encrypt=False,
 sslValidateCertificate=False
)
 query1 = 'SELECT * FROM "_SYS_BIC"."DIZ_DATA_DIAGNOSE";'
 df1 = pd.read_sql(query1, conn)

Metadaten

Anzahl der Zeilen als Metadaten hinzufügen
 num_rows = len(df1)
 timestamp = datetime.now().isoformat()

 context.add_output_metadata({
 "Anzahl der Zeilen": MetadataValue.int(num_rows),
 "Zeitstempel": MetadataValue.text(timestamp)
 })

 return df1
 except Exception as e:
 context.log.error(f"Ein Fehler ist aufgetreten: {e}")
 raise e
 finally:
 if conn:
 conn.close()

Scheduler

Linux – Dagster Mini Tutorial

return MaterializeResult(metadata={ "Row Count": num_rows, "Run Time":
current_time.strftime("%Y-%m-%d %H:%M:%S"), "Preview":

MetadataValue.md(df.head().to_markdown()) })

Markdown

Scheduler

Linux – Dagster Mini Tutorial

@asset(config_schema={
 'hana_address': Field(str, default_value="dwh"),
 'hana_port': Field(str, default_value="30000"),
 'hana_user': Field(str, default_value="USER"),
 # 'hana_password': Field(str, default_value=„GeheimesPassword"),
 'row_limit': Field(int, default_value=100, is_required=False),
 'output_text_file': Field(str, default_value="/root/ralf/output.txt")
 })
def fetch_from_hana_to_dataframe2(context) -> MaterializeResult:
 try:
 # Establish connection to SAP HANA
 conn = dbapi.connect(
 address=context.op_config['hana_address'],
 port=context.op_config['hana_port'],
 user=context.op_config['hana_user'],
 password=‚GeheimesPassword',
 # password=context.op_config['hana_password'],
 encrypt=False,
 sslValidateCertificate=False
)

Launchpad

DWH Pipeline

Daten- und Workflowmanagement

Tools/Plugins/Integrations

Daten- und Workflowmanagement

1. Auto-materializing
2. Scheduler
3. Markdown (Metadaten)
4. Launchpad
5. Backfill
6. Sensors
7. User Code „Server“

https://dagster.io/integrations

DIZ Team Magdeburg:

Dr.-Ing.Tim Herrmann

Antonia Schulz

Stefan Krötki

Christian Bruns

Frederike Euchner

Jan Maluche

Dr.rer.nat. Robert Waschipky

Prof.Dr.rer.nat.Dr.med.Johannes Bernarding

Fragen zum Thema:

Ralf.Luetzkendorf@med.ovgu.de

Daten- und Workflowmanagement

Vielen Dank für Ihre Aufmerksamkeit!

Fragen oder
Anmerkungen ?

Daten- und Workflowmanagement

Referenzen

https://airflow.apache.org/

https://dagster.io/

https://airflow.apache.org/
https://dagster.io/

	Folie 1: ETL Strecke vom DWH zum FHIR Server mit Dagster Eine Einführung
	Folie 2: Inhalt
	Folie 3: Datenmanagement
	Folie 4: Workflowmanagment
	Folie 5: Software
	Folie 6: Nutzen
	Folie 7: Privat
	Folie 8: DWH zum FHIR
	Folie 9: Open Source Top 8 Tools
	Folie 10
	Folie 11: Airflow Überblick
	Folie 12: Airflow Überblick
	Folie 13: Airflow Überblick
	Folie 14: Airflow Überblick
	Folie 15
	Folie 16: Dagster Überblick
	Folie 17: Dagster Überblick
	Folie 18: Dagster Überblick
	Folie 19: Dagster Überblick
	Folie 20: Dagster versus Airflow
	Folie 21: Vergleich
	Folie 22: Vergleich – Apache Airflow
	Folie 23: Vergleich - Dagster
	Folie 24: Vergleich
	Folie 25
	Folie 26
	Folie 27: DIZ Magdeburg
	Folie 28: Linux – Dagster Mini Tutorial
	Folie 29: Linux – Dagster Mini Tutorial
	Folie 30: Linux – Dagster Mini Tutorial
	Folie 31: Linux – Dagster Mini Tutorial
	Folie 32: Linux – Dagster Mini Tutorial
	Folie 33: Linux – Dagster Mini Tutorial
	Folie 34: Linux – Dagster Mini Tutorial
	Folie 35: Linux – Dagster Mini Tutorial
	Folie 36: Linux – Dagster Mini Tutorial
	Folie 37: Linux – Dagster Mini Tutorial
	Folie 38: DWH Pipeline
	Folie 39: Tools/Plugins/Integrations
	Folie 40
	Folie 41
	Folie 42

