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1. Why is everyone talking about real-world data these days?

2. What are structural differences between real-world data and data from
prospective trials?

3. What are the chances in using real-world data for my research?

4. Which limitations and biases are connected to real-world data, and how
should | encounter them in my analyses?
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2. Structural differences of data sources
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61 year old female \ * 63 yearold male

- No major comorbidities |, «  No major comorbidities

« New diagnosis of right-
sided colon cancer

. TNM: T3 N2 MO (Stage Ill)

« Adjuvant therapy after
successful resection

« New diagnosis of right- f i
sided colon cancer -y )

« TNM: T3 N2 MO (Stage Ill) e

« Adjuvant therapy after
successful resection

« Standard treatment:
FOLFOX

e Study treatment:

_ FOLFOX followed by =
Angelika Pembrolizumab Horst
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Verlauf
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Oncologist = Tertiary Care = Surgery/ICU Oncologist Tertiary Care
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Verlauf Oncologist = Tertiary Care = Surgery/ICU Oncologist Tertiary Care
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Patient ID- Treatment Group - Gender - Molecular Marken Visit ﬂ Radiological Staginﬂ Tumor Markers (CEA- LDH (U/L) - Physical Exam Resultﬂ Adverse Eventjig
PAT-001 Group A - Standard Therapy Male BRAF Mutant Baseline NO 40 147 Abnormal Mild
PAT-001 Group A - Standard Therapy Male BRAF Mutant Visit 1 T3 40 217 Normal Mild
PAT-001 Group A - Standard Therapy Male BRAF Mutant Visit 2 T3 10 167 Abnormal Moderate
PAT-001 Group A - Standard Therapy Male BRAF Mutant Visit 3 NO 5 203 Normal Mild
PAT-001 Group A - Standard Therapy Male BRAF Mutant Visit 4 M1 5 109 Abnormal Mild
PAT-002 Group A - Standard Therapy Female BRAF Mutant Baseline MO 40 121 Abnormal Severe
PAT-002 Group A - Standard Therapy Female BRAF Mutant Visit 1 T1 40 136 Normal Moderate
PAT-002 Group A - Standard Therapy Female BRAF Mutant Visit 2 M1 40 187 Normal Moderate
PAT-002 Group A - Standard Therapy Female BRAF Mutant Visit 3 N2 40 170 Normal Moderate
PAT-002 Group A - Standard Therapy Female BRAF Mutant Visit 4 T1 40 188 Normal None
PAT-003 Group A - Standard Therapy Male BRAF Mutant Baseline M1 30 240 Normal Mild
PAT-003 Group A - Standard Therapy Male BRAF Mutant Visit 1 N2 40 158 Abnormal Mild
PAT-003 Group A - Standard Therapy Male BRAF Mutant Visit 2 NO 10 139 Abnormal Mild
PAT-003 Group A - Standard Therapy Male BRAF Mutant Visit 3 T4 30 187 Normal Moderate
PAT-003 Group A - Standard Therapy Male BRAF Mutant Visit 4 N1 40 188 Abnormal None
PAT-004 Group B - Experimental Therapy Male KRAS Mutant Baseline T3 20 181 Abnormal None
PAT-004 Group B - Experimental Therapy Male KRAS Mutant Visit 1 T2 20 125 Abnormal Mild
PAT-004 Group B - Experimental Therapy Male KRAS Mutant Visit 2 NO 10 177 Normal None
PAT-004 Group B - Experimental Therapy Male KRAS Mutant Visit 3 N1 5 172 Abnormal None
PAT-004 Group B - Experimental Therapy Male KRAS Mutant Visit 4 M1 30 109 Abnormal Mild
PAT-005 Group A - Standard Therapy Male KRAS Wild-Type Baseline Tl 20 248 Normal Severe
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2. Structural differences of data sources

Diagnoses
¥ Diagnasisip
FollowlpAppaintments PatientlD
] AppointmentiD CancerType DiagnosticTests
PatientiD = Stage # tesup
) |
AppointmentDate \ InitialDiagnosisDate PatientiD
Purpase / o TestType
Mates 4 B B TestDate
/ P Results
T - Prescriptions
LabResult . — B prescriptionin
abResults Patients - _ re.scnptlon
B LabResulip T patoni —= PatientiD
PatientlD FirstName Medication
Testhame LastMame o
Resultvalue fBirth Startbate
DateOfBirt EndDate
ResultDate Gender
NormalRange Contactinfo
—
RadiologyReports ClinicalVisits
T —
ReportiD B vistip
Patient|D == PatientlD
ImagingType VisitDate
ReportDate Purpose
Findings Physicians S Outcomes PhysicianD
.
| PhysicianID \\\ ¥ cutcomeln
Mame = PatientlD
Treatments Specialty <urdicalProced T«Date
urgicalProcedures -
1 Treatment|D Contactinfo ] O‘Itco.m.e e
PatientiD Pru.(.(:dur{_'ID Descriptian
TreatmentType EatlendtID N
rocedureMame
StartDate
EndDate ProcedureDate
Dosage SurgeonlD
' Qutcome
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3. Chances of Real-World Data UNIVERSITAT
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» Access all existing clinical knowledge and experience (hypothetically)
* Do so at minimum expense of time and resources (hypothetically)

« Use statistical power to:

Reveal hard to detect associations between clinical courses / decisions and
outcome

Define more accurate disease phenotypes to instruct Omics-based research
Predict outcome and individualize strategies
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Complex disease phenotypes
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In th t/following 5 i
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‘ Neutropenia yes/no? L Neutrophils measured? {
[ ] Leukocytes < 1.000/uL
Fever density — ‘

Measured in the g
? — x —
Ananestlc |nf0 past/following 2 days? Interpolation
Temperature
Febrile days el  Neutropenia yes/no B -

Min. one temp. >=
38.0°C?
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Augment data

Pat_677 (W), Diagnose: C34.1, Alter b. Diagnose: 58, Vitalstatus: verstorben

@ Metastasen @ Strahlentherapie @ Systemtherapie @ UICC Klassifikation @ Verlauf
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Hypothesis-free Machine Learning

(B) s0,< 0%

Creatinine > ULN
Temperature > 38.9°C
CRP > 29 mg/L

AST > ULN

Smoker

Lymphocytes = 500 - 2999 /juL.
RespRate > 21 /min
CRP > 119 mglL
RespRate 16-21
Temperature > 37.3°C
Dyspnoe

LDH >ULN
Gamma-GT > ULN

BMI > 24.9 kg/m®
Neutrophils > 299 /ul.

Age > 55 years

paCo, > 45 mmHg

Former smoker
Temperature > 37.9°C

BMI > 29.9 kg/m®

PCT> 10 pgll

Known colonization = yes
BMI =18.5 - 24.9 kg/m*

BMI > 34.9 kg/m?

Urine Leukocytes = Positive
PCT > 0.006 ug/'L
Hypertension

RespRate > 29 /min

Gender = Male
Lymphocytes > 1499 /juL
Use of statins

Hemoglobin < 14.9 g/dL
Gamma-GT > 2xULN
GlasgowComaScale < 15
Pulse > 89 bpm

Urine Leukocytes > Positive+++
Vital Pulse = 45 - 89 bpm
Asymptomatic

Lymphocytes > 107 L
Diastolic BP > §9 mmHg
Nausea / Emesis

Dry cough

Urine Urubilinogen = Positive+++
Urea > 2xULN

Fibrinogen > ULN

Diabetes with no organ damage
Triglyceride > 2xULN
Triglyceride > ULN
Lymphocytes = 800 - 1499 juL.
Dementia

Muscle weakness

Use of ACE inhibitors

ALT > 2xULN

Platelets > 179,999 juL
Use of ACEAT1

Types
@ Patients' charat

True Positive Rate

(C)

°
3

)out of the feature

e
o

P == Test set (AUC: 0.80 £ 0.01)
, =~ Validation set (AUC: 0.71 £ 0.01)
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@® AuC
& Accuracy

Asymplomalic

Pulse = 45 - 89 bpm
Lymphocytes > 101/#15

000 025 050 0.75

False Positive Rate

Urine Leukocyles = Positive+++

(@ Laboratory values
@ vital parameters
@ Symptoms

(@ Comorbidities

@ Others

cough
Sasd
i
Dementia

D
Urea > 2xULN

ALT > 2xULN

Platelats > 179,939 A
Use of ACEATT
Taste disorder -

z

Muscle weakness 4
Usa of ACE inhibitors

Nausea / Emesis
Fibrinogen > ULN

Diabeles with no organ damage

iglyceride > 2xULN

rig

Diastolic BP > 59 mmi
"
Lymphocytes

Urine Urubllinog
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4. Limitations and Biases: Data quality

Diagnosen Detailansicht ~ Schnellsuche @ @ Kodip ¢ Strukturierte Erfassung o Falldiagnosen
Code S Bezeichnung
A43.0 K Pulmonale Nokardiose
J17.0* Pneumonie (durch) (bei) Nokardiose
B99 Sonstige und nicht néher bezeichnete Infektionskrankheiten
D46.9 Myelodysplastisches Syndrom, nicht néher bezeichnet
D63.0* Anédmie bei Neubildungen
D69.58 Sonstige sekundare Thrombozytopenien, nicht als transfusionsrefraktar bezeichnet
D70.6 Sonstige Neutropenie
J15.9 K Bakterielle Pneumonie
B96.8! Sonstige néher bezeichnete Bakterien als Ursache von Krankheiten, die in anderen Kapiteln klassifiziert sind
K80.00 Gallenblasenstein mit akuter Cholezystitis: Ohne Angabe einer Gallenwegsobstruktion
Z294.81 Zustand nach hamatopoetischer Stammzelltransplantation mit gegenwartiger Immunsuppression
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4. Limitations and Biases: Data quality

Diagnosen Detailansicht

Code s
Ad3.0
J17.0*
B99
D46.9
D63.0*
DE9.58
D70.6
J15.9
B96.8!
K80.00
Z94.81

Schnellsuche @ & @BEKodip Strukturierte Erfassung U Falldiagnosen

Bezeichnung
K Pulmonale Nokardiose
Pneumonie (durch) (bei) Nokardiose
Sonstige und nicht ndher bezeichnete Infektionskrankheiten
Myelodysplastisches Syndrom, nicht nadher bezeichnet
Anamie bei Neubildungen
Sonstige sekundére Thrombozytopenien, nicht als transfusionsrefraktér bezeichnet
Sonstige Neutropenie

K Bakterielle Pneumonie
Sonstige ndher bezeichnete Bakterien als Ursache von Krankheiten, die in anderen Kapiteln klass

Gallenblasenstein mit akuter Cholezystitis: Ohne Angabe einer Gallenwegsobstruktion
Zustand nach hamatopoetischer Stammzelltransplantation mit gegenwartiger Immunsuppression
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HCT-CI vor TX: O

aGvHD:
keine

Komplikationen:
1. Pilzpneumaonie (klinische Diagnose), ausgepragte Halluzinationen unter VFend,
2. histologisch gesichertes Basalzellkarzinom re Oberschenkel

Transfusionsregel:

- Erythrozyten- und Thrombozytenkonzentrate sind mit 30 Gy zu bestrahlen und CMV-frei zu transfundieren!
- EK's: D Rh+

- TK's: AB=B>A>0 Rh+

- FFP's: AB Rh+

Chimirismus-Verlauf (Agendix):
- Tag +14: 96%, 5 von 5 Empféngersignale
- Tag +30: 80%, 5 von 5 Empféngersignale

MRD-Marker zur Verlaufskontrolle: TET 2 (Labor: MLL Minchen)

MRD Verlauf:

TET2 nachweisbar, U2AF1 nachweisbar (20.12.2018) ED

TET2 nicht nachweisbar, U2AF1 nachweisbar (05.03.2018) nach Ind I
TET2 nicht nachweishar, U2AF1 nachweisbar (26.04.2018) nach alle Tx

Leistenhernie rechts

- aktuell (8/2018) unter intensiver immunsuppressier Therapie zunachst keine chirurgische Intervention
Port-Implantation am 28.08.2018

Cholezystolithiasis

Hiémorrhoiden bis IV® sowie Analprolaps

- 2-fache Gummibandligatur bei schmerzhaften Hamorrhoiden 2. Grades am 08.08.2018

- keine erneute endoskopische Interventionsméglichkeit am 23.08.2018 bei Hamorrhoiden IV sowie Analprolaps
- aktuell (8/2018) unter intensiver immunsuppressier Therapie zunachst keine chirurgische Intervention
chronische Niereninsuffizienz, a.e. med.-toxischer Genese

- Cystatin C-Clearance von 50ml/min (Befund vom 27.12.2018)
HLA=ATLGTUL, 2001 HLA-B U/ UL, "38UL, HLA-LU/ UL, "1L7US, ALA-URBLTLIUL, "I10UL, HLA-UUYBLTUS UL "UDius

HLA-Retypisierung Spender (DE DKM 2963744):
HLA-A*24:02, *26:01; HLA-B*07:02, *38:01, HLA-CO7+02:, *12:03, HLA-DRBE1*13:01, *16:01, HLA-DQB1*05:02,*06:03

HLA-Antik&rper (Luminex): nicht erforderlich

Remissionsstatus vor TX (KMP vem 5.03.2018): Histopathologie: Eine reifungsgestérte Himatopoese mit Stromaddem, entzindlicher Markraumreaktion und Persistenz einer CD34- positiven
Progenitorzellpopulation ven knapp Gber 5% der kemhaltigen Zellen neben einer initialen Vermehrung retikuldrer Knochenmarksfasern (fokal MF-1).

hweis TET2, U2AF1 persistierend nachweisbar

UKTZ. ...

MRD: MLL-Miinch keine N
HCT-CI vor TX: O
\J unmversigs
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4. Limitations and Biases: Data quality

Institut fiir Digitale Medizin und
Klinizche Datanwicesnechatten
Pat. beurlzubt

MEMO: Noxafil ansetzen?
OAV: Ubelksit deutlich gebessan

V: Pat. hauta im gutan AZ, Meama: Moxafil, wenn Aplasie

V: Pat. imgutan AZ, aktulellke'ine

V: sehrgutes Befinden, heute
Beurdaubung nach Laber,

Notizer * Unstructured data

* Different standards
e e Different training
Ranitic 300 m * Different resources

Kalinorret. P

ey  Technical interoperability
T e Syntactic interoperability

D e Semantic interoperability
NaCl 0,.9% 10
= KCl 7.45%

Jonasteril 10(
KCl 7,.45% 40

Nahydrogencarbonat 8.4% 250..

mol v +20 mmo

b 250 ml
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Example: Machine Learning in Neutropenic Fever EREN I

Institut fiir Digitale Medizin und
Klinische |Datenwissenschatten

Laboratory data (145) Value for day 1 to day 4 (febrile neutropenia (FN))
Body temperature (19) Value for day -4 to day O (time before FN)
Microbiological findings (23) Minimum/maximum value

Virological findings (8) Days from minimum/maximum value to day 1
Radiological findings (3) Differences of values

Patient characteristics (8)
Underlying disease
Neutropenia (6)
Medication (9) Choice of class of features/categorisation
Comorbidities (4) Missing data handling/imputation
Visualise interaction of features

Febrile neutropenia

.|7._. | | | | IW Classification
I | 1 adverse

outcome

Admission Day -4 Day 1 Day 4

o J
e

Observational period
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Example: Machine Learning in Neutropenic Fever

» 65 selected features

ROC (Repeated Cross-Validation)

0.74

0.72

0.70

0.63

50

T T
100 150

Variables

features -

actual
N
YES 8 1
NO 14 101

predictions YES

200

» Internal validation AUC = 0.75
= Qut-of-sample validation AUC = 0.68
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features

Albumin3

Age

PCT314

Kalium11

Albuminz
TaglmaAufenthalt
CRP311

CRP01 A

Kalium_21

Meutros11

CRP114
PCTmax_AufnFevers31 1
CRP214

Meutros01
AB_DurchbruchTherapieArt 4
Meutros31 1

Kalium01 4
Albuminmin_AufnFevers331 4
Enthvert31 1

CRP_111
ChemoBeforeFevers
Enthyert1
Enithvert_21
Albuminmax_AufnFever331 1
Temp3_Clu

MCW21 7

MCW0T 7

MCW_31 1

CRP_414

CRP_214

PTT314

PCT214

Chlorid31 1

GOT31

KREA3T T

KREA_ 211

Harnstoff_31 4
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Example: Machine Learning in Neutropenic Fever
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» 65 selected features

Albumin3 T
Age -

PCT31 -
kalium11
AlbuminZ1 1
TaglmaAufenthalt 1
CRP31-

CRPO1 -

* Internal validation AUC = 0.75
= Qut-of-sample validation AUC = 0.68
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Possible Meanings of Missingness Py e o

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

« Performed in another center / department / location / data system
« Data loss

* Unstructured / cryptic documentation

* Hand-written note

 Lack of interface / data transfer process

* Intentionally not done (not needed, too expensive / lack of reimbursement or
result obvious)

 Unintentionally not done (forgotten, sample lost, unable to perform procedure)
« Done, but intentionally not documented (forensic issues)
* Done, but unintentionally not documented (failed to record / trsnscribe)
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Examples for Possible Interpretations of Missingness — RiERA AT

Institut fiir Digitale Medizin und
Klinische Datenwissenschaften

A patient with community-acquired pneumonia presents himself in the
emergency department

The inflammatory paremeter ,Procalcitonin” offers good risk classification,

but Is expensive
PCT notin

PCT in dataset

[ ] [
PCT not local PCT local PCT not local
standard standard standard

PCT local
standard

Indicator: Quality [l Indicator: Clinical Direct Bundesministerium
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Missingness (and presence) of Data in Real-World ~ £2tiitd
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Missing at random (MAR)

Not missing at random (NMAR)
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Missing completely at random (MCAR)

UNIVERSITAT
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Institut fiir Digitale Medizin und
Klinische Datenwissenschaften

,Data is missing for no obvious reason”

\Z

 Does not introduce bias

Mass MCAR missingness may cause loss of power
Mass MCAR may cause underestimation of effect sizes

Faulty data
interface at one

sites

of multiple study

Random
documentation
mistakes

GOETHE-UNIVERSITAT f f k f

Random treatment
mistakes
(missing prescription,
diagnostic test)
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Missing at random (MAR)
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Institut fiir Digitale Medizin und
Klinische Datenwissenschaften

»,Missingness is related to a variable outside the primary observation”
N

* May cause biased overall results
« Relationship between variables intact

Less
comprehensive
documentation in
elderly / terminally
ill patients

Concurring
study leads to
documentation
focus on distinct
population

Smaller hospitals
less likely to
order expensive
tests/drugs
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Not missing at random (NMAR)
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Institut fiir Digitale Medizin und
Klinische Datenwissenschaften

»Missingness is related to the primary observation”

N7

« Causes biased overall results
« Causes biased relationship between variables

Undocumented

:3S sy Fmrm DZ|F dkfz. ;.
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Handling Missingness

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

= ,,Complete record analyses” = Drop everything with one missing variable
* May cause bias in NMAR scenarios
» Greatest loss of power

* Create dummy variable / feature for missingness
» Causes co-linearity between dummy variable/feature and value
* Great loss of power in MCAR scenarios
» Good solution for sensitivity analyses

* Impute missing values
» By definition limited to MAR and MCAR scenarios
* May increase pre-existing bias in the dataset

HHHHHHHHHHHH
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Means Of imputation FRANKFURT AM MAIN

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

Age - Trza:’:)r::nt- Stage Response- TTP (days)- Survival (days) [ Mean Value
56 A lib PD 117 180
62 B Y oD S 0
47 A v PR = o0
65 B ilb CR 180 >
59 A IV PD 117 50
53 B lib PR 200 365
61 A IV SD 90 200
58 B IV PD 80 160
49 A llib PR 120 300
67 B v cR — =

Pseudo-exactness, artificially narrow Cls, biased histogramm, loss of

effect size, masqued interactions, unrealistic values...
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Means Of imputation FRANKFURT AM MAIN

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

Age Treatment Stage  Response  TTP(days)  Survival (days) [ PAEYRRVAY PPN

M cowp M [~ | - |

56 A lllb PD 110 180, » Class/group based mean
62 B vV SD 100 210

47 A vV PR 150 320

65 B b CR 180 400

59 A vV PD 110 150

53 B b PR 200 365

61 A \Y SD 90 200

58 B vV PD 80 160

49 A b PR 120 300

67 B vV CR 250 500

Pseudo-exactness, artificially narrow Cls, biased histogramm , unrealistic

values ...
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Means Of imputation FRANKFURT AM MAIN

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

Age Treatment Stage Response  TTP (days)  Survival (days)
H  cow H - ~ * Mean Value
56 A b PD 83 180
62 B v D 100 .o ° Class/group based mean
47 A v PR 150 3200 « Model-based
65 B b CR 180 400
59 A v PD 54 150
53 B b PR 200 365
61 A \Y SD 90 200
58 B IV PD 80 160
49 A b PR 120 300
67 B IV CR 250 500

Pseudo-exactness, artificially narrow Cls
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Means of imputation

Age Treatment Stage Response  TTP(days) Survival (days)

Group [~ | - - |

56 A b PD 180
56 A b PD 56 180
56 A b PD 67 180
56 A lb PD 78 180
56 A b PD 93 180
56 A b PD 45 180
56 A b PD 67 180
56 A b PD 110 180
56 A b PD 78 180
56 A b PD 64 180
56 A b PD 98 180
56 A b PD 78 180
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Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

Mean Value

Class/group based
mean

Model-based

Multiple imputations
+/- chained equations

High workload, possible bias by regression models, maintains bias in

MNAR scenarios
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Causal Machine Learning? EREN I

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

nature medicine

Perspective https://doi.org/10.1038/s41591-024-02902-1

Causal machinelearning for predicting
treatment outcomes
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Working with Real-World Data

Institut fiir Digitale Medizin und
Consult a clinician

Klinische Datenwissenschaften
Understand your data and where it comes from

Prepare and compare your data
Perform EXTENSIVE sensitivity analyses

For prediction, only use features with high availability,
normalize timelines
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Take Home Message

Institut fiir Digitale Medizin und
Klinische Datenwissenschatten

 We are about(ish) to enter a new e
. . . oy Yodictinorn Real-wprld :
age of clinical data availability o0 o @ | modia™ conasins .
« Real-world data = abundant & e
powerful

 Real-word data also = laborious &
difficult to process

 Risk of false conclusions (prediction
models!)
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= for false concLuusions

» Chance of new discoveries
(phenotypes! precision medicine!)
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