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Ausnahmetolerante hierarchische Wissensbasen

e Urspriinge in den Bereichen ,lernende Agenten”/, Kl in Spielen”
z. B. [Apeldoorn, Kern-Isberner; Commonsense 2017], [Apeldoorn, Dockhorn; IEEE Transactions on Games 2021]

e Hierarchisches Wissen basierend auf Regeln mit Ausnahmen;
kann aus Daten gelernt werden

e Leicht verstandlich, auch ohne Wissensreprasentationsexpertise
[Kriiger, Apeldoorn, Kern-Isberner; QR 2017]

e Implementierung: INTEKRATOR-Toolbox
[Apeldoorn, Panholzer; GMDS 2021]
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Wissensbasen Lernen

° Datensatz: female overweight
female no_overweight
female overweight
female no_overweight
male overweight
male no_overweight

@ male overweight
male no_overweight
male no_overweight

smoker therapyA no_recovery
smoker therapyA no_recovery
smoker therapyB no_recovery
non-smoker therapyB recovery
smoker therapyA no_recovery
non-smoker  therapyA recovery
non-smoker therapyB no_recovery
smoker therapyB recovery
smoker therapyA recovery

o Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

,Allgemein genesen Patienten nicht gut,

no_overweight -> recovery [0.8]

aulBer wenn nicht iibergewichtig,

auler Raucher mit Therapie A

rr

therapyA "~ smoker -> no_recovery [0.75]

female " smoker -> no_recovery [1.0]

male " therapyA " no_overweight -> recovery [1.0]
male ~ no_overweight "~ smoker -> recovery [1.0]




UNIVERSITATSmedizin.

) Lo Institut fiir Medizinische Biometrie, MAINZ
Datensch utz bel HKBs — Ei nfu h rung Epidemiologie und Informatik (IMBEI)

|nferen2 [Apeldoorn, Kern-Isberner; GCAI 2016]

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA "~ smoker -> no_recovery [O.
female " smoker -> no_recovery [1.0]

%

male "~ therapyA " no_overweight -> reco .0]

male " no_overweight " smoker -> recovery

Gegeben diese Informationen und gemall dem
Datensatz liegt die Heilungschance bei 0.25!

Mein Patient ist mann-
lich und Raucher; Therapie A?

Warum?

(% Das Ergebnis konnte von der Information
Therapie A und Raucher inferiert werden,
welche in 75% der Falle zu keiner Heilung fiihrt.
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Datenschutzaspekte

* Wichtig im medizinischen Bereich, besonders fiir Patientendaten

* Wenn eine Wissensbasis aus Daten gelernt wurde:
Inwiefern lassen sich die Originaldaten (z. B. einzelne Patienten)
wiederherstellen?

e Intuition:
GroBere und schlechter generalisierende Wissensbasen mit
vielen Ausnahmen anfalliger fiir Datenschutzverletzungen

Heilmann, Henkys, Apeldoorn, Strauch, Schmidt, Lilienthal, Panholzer 7
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Wiederherstellen der Originaldaten

female

e Datensatz:

%

female

female
female
male
male
male
male
male

overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
no_overweight

smoker therapyA no_recovery
smoker therapyA no_recovery
smoker therapyB no_recovery
non-smoker therapyB recovery
smoker therapyA no_recovery
non-smoker  therapyA recovery
non-smoker therapyB no_recovery
smoker therapyB recovery
smoker therapyA recovery

o Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

,Allgemein genesen Patienten nicht gut,

no_overweight -> recovery [0.8]

aulBer wenn nicht iibergewichtig,

[1.0]

auler Raucher mit Therapie A

i

" no_overweight -> recovery [1.0]

therapyA "~ smoker -> no_recovery [0.75]
female " smoker -> no_recovery

male ~ therapyA

male ~ no_overweight

~ smoker -> recovery [1.0]
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Wiederherstellen der Originaldaten

female

e Datensatz:

female
female
female
male
male
male
male
male

overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
no_overweight

smoker therapyA no_recovery
smoker therapyA no_recovery
smoker therapyB no_recovery
non-smoker therapyB recovery
smoker therapyA no_recovery
non-smoker  therapyA recovery
non-smoker therapyB no_recovery
smoker therapyB recovery
smoker therapyA recovery !

,Allgemein genesen Patienten nicht gut,

aulBer wenn nicht iibergewichtig,

therapyA ~ smoker

female ©~ smoker -> no_

auler Raucher mit Therapie A

i

male "~ therapyA " no_overw

N

male "~ no_overweight

ht -> recovery [1.0]
smoker -> recovery [1.0]

Exception tracing 9
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EXkUI’S: k‘Anonymitat [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

e Datensatz:

female
female
female
female
male
male
male
male
male

overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
no_overweight

smoker
smoker
smoker
non-smoker
smoker
non-smoker
non-smoker
smoker
smoker

therapyA
therapyA
therapyB
therapyB
therapyA
therapyA
therapyB
therapyB
therapyA

no_recovery
no_recovery
no_recovery
recovery
no_recovery
recovery
no_recovery
recovery
recovery |
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EXkurS: k—Anonymitﬁt [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

e Datensatz:

female overweight smoker
female no_overweight non-smoker
male overweight smoker
male no_overweight non-smoker
male overweight non-smoker
male no_overweight smoker

therapyB
therapyB
therapyA
therapyA
therapyB
therapyB

no_recovery
recovery
no_recovery
recovery
no_recovery
recovery

2-anonym
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EXkurS: k‘Anonymitat [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

e Datensatz:

female
male
male
male
male

no_overweight
overweight
no_overweight
overweight
no_overweight

non-smoker
smoker
non-smoker
non-smoker
smoker

therapyB
therapyA
therapyA
therapyB
therapyB

recovery
no_recovery
recovery

no_recovery

recovery

3-anonym
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EXkurS: k‘Anonymitat [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

e Datensatz:

male
male
male
male

overweight
no_overweight
overweight

no_overweight

smoker
non-smoker
non-smoker
smoker

therapyA
therapyA
therapyB
therapyB

no_recovery
recovery
no_recovery
recovery

4-anonym
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Bereinigungsalgorithmus (fiir k := K)

° Datensatz: female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker  therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery !

,Allgemein genesen Patienten nicht gut,

weight -> recovery [0.8] aulBer wenn nicht iibergewichtig,

auler Raucher mit Therapie A

i

therapyA ~ smoker
female "~ smoker -> no_

male " therapyA " no_overw@light -> recovery [1.0]

male  NOo_uvesiw _° " .aer -> recovery [1.0] 14
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Bereinigungsalgorithmus (fiir k := K)

e Datensatz:

%

female
female
female
female
male
male
male
male
male

overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
overweight
no_overweight
no_overweight

smoker therapyA no_recovery
smoker therapyA no_recovery
smoker therapyB no_recovery
non-smoker therapyB recovery
smoker therapyA no_recovery
non-smoker  therapyA recovery
non-smoker therapyB no_recovery
smoker therapyB recovery
smoker therapyA recovery

o Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

,Allgemein genesen Patienten nicht gut,

no_overweight -> recovery [0.8]

aulBer wenn nicht iibergewichtig,

therapyA "~ smoker -> no_recovery [0.75]

female " smoker -> no_recovery [1.0]

auler Raucher mit Therapie A

i

male " therapyA " no_overweight -> recovery [1.0]
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Evaluationsdaten

e Synthetische Daten
e Zwei offentlich verfligbare Realdatensatze:

— Breast Cancer (9 Features, zweiwertiger Outcome)
[Zwitter, Soklic 1988; UCI Machine Learning Repository]

— National Poll on Healthy Aging (NPHA) Doctor Visits

(14 Features, dreiwertiger Outcome)
[National Poll on Healthy Aging (NPHA) 2023; UCI Machine Learning Repository]

Heilmann, Henkys, Apeldoorn, Strauch, Schmidt, Lilienthal, Panholzer 17
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Experimente mit synthetischen Daten

e 100 Datensdtze moderater GroBe, 2-wertige Features, 103 Zeilen
e Erhohung Rauschanteil in 5% Schritten ( =2000 Datensatzen)
(1) Messen der Anzahl Verletzungen von k-Anonymitat

(2) Messen der Inferenzqualitat (im Vergleich zur k-Anonymi-
sierung als Vorverarbeitung der Daten vgl. [LeFevre et al ; ICDE 2006])

Heilmann, Henkys, Apeldoorn, Strauch, Schmidt, Lilienthal, Panholzer 18
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Verletzungen bei synthetischen Daten (k:=5)

200 -

100 1

o

0 20 40 60 80 100 .
vereinfachte Darstellung
Ra USChen [%] nach [Heilmann et al.;

Studies in Health
o _ Technolgy and
nach Bereinigungsalgorithmus  Informatics 2024]

5-Anonymitat-Verletzungen

ohne Bereinigung

— Bereinigungsalgorithmus kann Anonymitat erzeugen 19
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Inferenzqualitat bei synthetischen Daten

Bereinigungsalgorithmus k-anonymisierte Datensatze
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— Geringerer Verlust der Inferenzqualitat, stabiler gegeniiber k
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Inferenzqualitat bei realen Daten

NPHA Doctor Visits Breast Cancer
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vereinfachte Darstellung nach [Heilmann et al.; Studies in Health Technology and Informatics 2024]

— Geringerer Qualitatsverlust als k-Anonymisierung der Daten o
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Zusammenfassung und Ausblick

e Datenschutz spielt auch beim Lernen von Wissensbasen aus
Daten eine wichtige Rolle — insbesondere in sensiblen Bereichen

e Entfernen von Regeln ermoglicht Datenschutz

 Bereinigungsalgorithmus erhalt Inferenzqualitat besser als
andere Verfahren (z. B. k-Anonymisierung der Daten)

e Ausblick: Implementierung in der INTEKRATOR-Toolbox

 Alternativer Ansatz: Erweiterung des Lernalgorithmus

Heilmann, Henkys, Apeldoorn, Strauch, Schmidt, Lilienthal, Panholzer 23
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