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Datenschutz bei HKBs  Einführung→
Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Ausnahmetolerante hierarchische Wissensbasen
● Ursprünge in den Bereichen „lernende Agenten“/„KI in Spielen“
 z. B. [Apeldoorn, Kern-Isberner; Commonsense 2017], [Apeldoorn, Dockhorn; IEEE Transactions on Games 2021]

● Hierarchisches Wissen basierend auf Regeln mit Ausnahmen; 
 kann aus Daten gelernt werden

● Leicht verständlich, auch ohne Wissensrepräsentationsexpertise 
 [Krüger, Apeldoorn, Kern-Isberner; QR 2017]

● Implementierung: INTEKRATOR-Toolbox
 [Apeldoorn, Panholzer; GMDS 2021]
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Datenschutz bei HKBs  Einführung→
Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Wissensbasen Lernen 
● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …‟
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Datenschutz bei HKBs  Einführung→
Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Inferenz [Apeldoorn, Kern-Isberner; GCAI 2016]

 no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

      Mein Patient ist männ-
lich und Raucher; Therapie A?

S
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E
  

Gegeben diese Informationen und gemäß dem 
Datensatz liegt die Heilungschance bei 0.25!

Warum?
Das Ergebnis konnte von der Information
Therapie A und Raucher inferiert werden,
welche in 75% der Fälle zu keiner Heilung führt. 
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Datenschutzaspekte
● Wichtig im medizinischen Bereich, besonders für Patientendaten

● Wenn eine Wissensbasis aus Daten gelernt wurde:
 Inwiefern lassen sich die Originaldaten (z. B. einzelne Patienten)
 wiederherstellen?

● Intuition: 
 Größere und schlechter generalisierende Wissensbasen mit 
 vielen Ausnahmen anfälliger für Datenschutzverletzungen
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Wiederherstellen der Originaldaten 
● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Wiederherstellen der Originaldaten
● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“

!

Exception tracing
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Exkurs: k-Anonymität [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“

!

Exception tracing
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N

female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery

10
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Exkurs: k-Anonymität [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“

Exception tracing
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...
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery
male no_overweight smoker therapyA recovery

2-anonym

11
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Exkurs: k-Anonymität [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“

Exception tracing
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...
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery
male no_overweight smoker therapyA recovery
male no_overweight smoker therapyA recovery

3-anonym

12
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Exkurs: k-Anonymität [Sweeney; Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002]

● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“

Exception tracing
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...
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery
male no_overweight smoker therapyA recovery
male no_overweight smoker therapyA recovery
male no_overweight smoker therapyA recovery

4-anonym

13
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Bereinigungsalgorithmus (für k := K)
● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0] 
male ^ no_overweight ^ smoker -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“

!

Exception tracing
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Spezifischste Regel(n) 
entfernen! 14
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Bereinigungsalgorithmus (für k := K)
● Datensatz:

● Kompakte Wissensbasis als Regeln mit Ausnahmen:

female overweight smoker therapyA no_recovery
female no_overweight smoker therapyA no_recovery
female overweight smoker therapyB no_recovery
female no_overweight non-smoker therapyB recovery
male overweight smoker therapyA no_recovery
male no_overweight non-smoker therapyA recovery
male overweight non-smoker therapyB no_recovery
male no_overweight smoker therapyB recovery
male no_overweight smoker therapyA recovery

no_recovery [0.556]

no_overweight -> recovery [0.8]

therapyA ^ smoker -> no_recovery [0.75]
female ^ smoker -> no_recovery [1.0]

male ^ therapyA ^ no_overweight -> recovery [1.0]

„Allgemein genesen Patienten nicht gut,
   außer wenn nicht übergewichtig,
     außer Raucher mit Therapie A
     …“
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Bei Bedarf für weitere 
Regeln wiederholen… 15
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Evaluationsdaten
● Synthetische Daten

● Zwei öffentlich verfügbare Realdatensätze:

–  Breast Cancer (9 Features, zweiwertiger Outcome)
 [Zwitter, Soklic 1988; UCI Machine Learning Repository]

–  National Poll on Healthy Aging (NPHA) Doctor Visits
 (14 Features, dreiwertiger Outcome)
 [National Poll on Healthy Aging (NPHA) 2023; UCI Machine Learning Repository]
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Experimente mit synthetischen Daten
●       Datensätze moderater Größe,   -wertige Features,      Zeilen

● Erhöhung Rauschanteil in      Schritten (          Datensätzen)    

(1) Messen der Anzahl Verletzungen von k-Anonymität

(2) Messen der Inferenzqualität (im Vergleich zur k-Anonymi-
 sierung als Vorverarbeitung der Daten vgl. [LeFevre et al.; ICDE 2006])
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Verletzungen bei synthetischen Daten (k := 5)

 Bereinigungsalgorithmus kann Anonymität erzeugen

ohne Bereinigung nach Bereinigungsalgorithmus

5-
A

no
ny

m
itä

t-
V
er

le
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n

Rauschen [%]

19

vereinfachte Darstellung
nach [Heilmann et al.; 
Studies in Health 
Technolgy and 
Informatics 2024]
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Inferenzqualität bei synthetischen Daten

 Geringerer Verlust der Inferenzqualität, stabiler gegenüber k 

ohne Bereinigung k := k := k := k :=
k :=k :=

In
fe

re
nz

qu
al

itä
t

Rauschen [%] Rauschen [%]

Bereinigungsalgorithmus k-anonymisierte Datensätze

nach [Heilmann et al.; Studies in Health Technology and Informatics 2024]
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Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

ohne Bereinigung Bereinigungsalgorithmus

In
fe
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nz

qu
al

itä
t

k k

NPHA Doctor Visits Breast Cancer

k-anonymisierte Daten

Inferenzqualität bei realen Daten

 Geringerer Qualitätsverlust als k-Anonymisierung der Daten 21

vereinfachte Darstellung nach [Heilmann et al.; Studies in Health Technology and Informatics 2024]
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Datenschutz bei HKBs  Zusammenfassung→
Institut für Medizinische Biometrie,
Epidemiologie und Informatik (IMBEI)

Zusammenfassung und Ausblick
● Datenschutz spielt auch beim Lernen von Wissensbasen aus 
 Daten eine wichtige Rolle – insbesondere in sensiblen Bereichen

● Entfernen von Regeln ermöglicht Datenschutz

● Bereinigungsalgorithmus erhält Inferenzqualität besser als
 andere Verfahren (z. B. k-Anonymisierung der Daten)

● Ausblick: Implementierung in der INTEKRATOR-Toolbox

● Alternativer Ansatz: Erweiterung des Lernalgorithmus
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